skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: DS.js: Turn Any Webpage into an Example-Centric Live Programming Environment for Learning Data Science
Data science courses and tutorials have grown popular in recent years, yet they are still taught using production-grade programming tools (e.g., R, MATLAB, and Python IDEs) within desktop computing environments. Although powerful, these tools present high barriers to entry for novices, forcing them to grapple with the extrinsic complexities of software installation and configuration, data file management, data parsing, and Unix-like command-line interfaces. To lower the barrier for novices to get started with learning data science, we created DS.js, a bookmarklet that embeds a data science programming environment directly into any existing webpage. By transforming any webpage into an examplecentric IDE, DS.js eliminates the aforementioned complexities of desktop-based environments and turns the entire web into a rich substrate for learning data science. DS.js automatically parses HTML tables and CSV/TSV data sets on the target webpage, attaches code editors to each data set, provides a data table manipulation and visualization API designed for novices, and gives instructional scaffolding in the form of bidirectional previews of how the user’s code and data relate.  more » « less
Award ID(s):
1735234
PAR ID:
10064885
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM User Interface Software and Technology Symposium
Page Range / eLocation ID:
691 to 702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Open-ended programming increases students' motivation by allowing them to solve authentic problems and connect programming to their own interests. However, such open-ended projects are also challenging, as they often encourage students to explore new programming features and attempt tasks that they have not learned before. Code examples are effective learning materials for students and are well-suited to supporting open-ended programming. However, there is little work to understand how novices learn with examples during open-ended programming, and few real-world deployments of such tools. In this paper, we explore novices' learning barriers when interacting with code examples during open-ended programming. We deployed Example Helper, a tool that offers galleries of code examples to search and use, with 44 novice students in an introductory programming classroom, working on an open-ended project in Snap. We found three high-level barriers that novices encountered when using examples: decision, search, and integration barriers. We discuss how these barriers arise and design opportunities to address them. 
    more » « less
  2. Novice programmers often struggle with code understanding and debugging. Live Programming environments visualize the runtime values of a program each time it is modified to provide immediate feedback, which help with tracing the program execution. This paper presents the use of a Live Programming tool in a CS1 course to better understand the impact of Live Programming on novices’ learning metrics and their perceptions of the tool. We conducted a within-subjects study at a large public university in a CS1 course in Python (N=237) where students completed tasks in a lab setting, in some cases with a Live Programming environment, and in some cases without. Through post-lab surveys and open-ended feedback, we measured how well students understood the material and how students perceived the programming environment. To understand the impact of Live Programming, we compared the collected data for students who used Live Programming with the data for students who did not. We found that while learning outcomes were the same regardless of whether Live Programming was used or not, students who used the Live Programming tool completed some code tracing tasks faster. Furthermore, students liked the Live Programming environment more, and rated it as more helpful for their learning. 
    more » « less
  3. Today’s STEM classrooms have expanded the domain of computer science education from a basic two-toned terminal screen to now include helpful Integrated Development Environments(IDE) (BlueJ, Eclipse), block-based programming (MIT Scratch, Greenfoot), and even physical computing with embedded systems (Arduino, LEGO Mindstorm). But no matter which environment a student starts programming in, all students will eventually need help in finding and fixing bugs in their code. While the helpful IDE’s have debugger tools built in (breakpoints for pausing your program, ways to view/modify variable values, and "stepping" through code execution), in many of the other programming environments, students are limited to using print statements to try and "see" what is happening inside their program. Most students who learn to write code for Arduino microcontrollers will start within the Arduino IDE, but the official Arduino IDE does not currently provide any debugging tools. Instead, a student would have to move on to a professional IDE such as Atmel Studio or acquire a hardware debugger in order to add breakpoints or view their program’s variables. But each of these options has a steep learning curve, additional costs, and can require complex configurations. Based on research of student debugging practices[3, 7] and our own classroom observations, we have developed an Arduino software library, called Arduino Debugger, which provides some of these debugging tools (ex. breakpoints) while staying within the official Arduino IDE. This work continues a previous library, (redacted), which focused on features specific to e-textiles development boards. The Arduino Debugger library has been modified to support not only e-textile boards (Lilypad, Adafruit Circuit Playground) but most AVR and ARM based Arduino boards.We are also in the process of testing a set of Debugging Code Templates to see how they might increase student adoption of debugging tools. 
    more » « less
  4. Data science has been growing in prominence across both academia and industry, but there is still little formal consensus about how to teach it. Many people who currently teach data science are practitioners such as computational researchers in academia or data scientists in industry. To understand how these practitioner-instructors pass their knowledge onto novices and howthat contrasts with teaching more traditional forms of programming, we interviewed 20 data scientists who teach in settings ranging from small-group workshops to large online courses. We found that: 1) they must empathize with a diverse array of student backgrounds and expectations, 2) they teach technical workflows that integrate authentic practices surrounding code, data, and communication, 3) they face challenges involving authenticity versus abstraction in software setup, finding and curating pedagogically-relevant datasets, and acclimating students to live with uncertainty in data analysis. These findings can point the way toward better tools for data science education and help bring data literacy to more people around the world. 
    more » « less
  5. Many block-based programming environments have proven to be effective at engaging novices in learning programming. However, most offer only restricted access to the outside world, limiting learners to commands and computing resources built in to the environment. Some allow learners to drag and drop files, connect to sensors and robots locally or issue HTTP requests. But in a world where most of the applications in our daily lives are distributed (i.e., their functionality depends on communicating with other computers or accessing resources and data on the internet), the limited support for beginners to envision and create such distributed programs is a lost opportunity. We argue that it is feasible to create environments with simple yet powerful abstractions that open up distributed computing and other widely-used but advanced computing concepts including networking, the Internet of Things, and cybersecurity to novices. The paper presents the architecture of and design decisions behind NetsBlox, a programming environment that supports these ideas. We show how NetsBlox expands opportunities for learning considerably: NetsBlox projects can access a wealth of online data and web services, and they can communicate with other projects. Moreover, the tool infrastructure enables young learners to collaborate with each other during program construction, whether they share their physical location or study remotely. Importantly, providing access to the wider world will also help counter widespread student perceptions that block-based environments are mere toys, and show that they are capable of creating compelling applications. In this way, NetsBlox offers an illuminating example of how tools can be designed to democratize access to powerful ideas in computing. 
    more » « less