Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli‐responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol‐terminated polystyrene (PS) or polystyrene‐poly(acrylic acid) (PS‐
- Award ID(s):
- 1752517
- NSF-PAR ID:
- 10065003
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 39
- Issue:
- 14
- ISSN:
- 1022-1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Poly(amino acid)-coated gold nanoparticles hold promise in biomedical applications, particularly because they combine the unique physicochemical properties of the gold core, excellent biocompatibility, and easy functionalization of the poly(amino acid)-capping shell. Here we report a novel method for the preparation of robust hybrid core–shell nanosystems consisting of a Au 144 cluster and a densely grafted polylysine layer. Linear polylysine chains were grown by direct N -carboxyanhydride (NCA) polymerization onto ligands capping the gold nanocluster. The density of the polylysine chains and the thickness of the polymer layer strongly depend on the amount and concentration of the NCA monomer and the initiator. The optical spectra of the so-obtained core–shell nanosystems show a strong surface plasmon resonance (SPR)-like band at 531 nm. In fact, despite maintenance of the gold cluster size and the absence of interparticle aggregation, the polylysine-capped clusters behave as if they have a diameter nearly 4 times larger. To the best of our knowledge, this is the first observation of the growth of a fully developed, very stable SPR-like band for a gold nanocluster of such dimensions. The robust polylysine protective shell makes the nanoparticles very stable under conditions of chemical etching, in the presence of glutathione, and at different pH values, without gold core deshielding or alteration of the SPR-like band. This polymerization method can conceivably be extended to prepare core–shell nanosystems based on other mono- or co-poly(amino acids).more » « less
-
Today, magnetic hyperthermia constitutes a complementary way to cancer treatment. This article reports a promising aspect of magnetic hyperthermia addressing superparamagnetic and highly Fe/Au core-shell nanoparticles. Those nanoparticles were prepared using a wet chemical approach at room temperature. We found that the as-synthesized core shells assembled with spherical morphology, including face-centered-cubic Fe cores coated and Au shells. The high-resolution transmission microscope images (HRTEM) revealed the formation of Fe/Au core/shell nanoparticles. The magnetic properties of the samples showed hysteresis loops with coercivity (HC) close to zero, revealing superparamagnetic-like behavior at room temperature. The saturation magnetization (MS) has the value of 165 emu/g for the as-synthesized sample with a Fe:Au ratio of 2:1. We also studied the feasibility of those core-shell particles for magnetic hyperthermia using different frequencies and different applied alternating magnetic fields. The Fe/Au core-shell nanoparticles achieved a specific absorption rate of 50 W/g under applied alternating magnetic field with amplitude 400 Oe and 304 kHz frequency. Based on our findings, the samples can be used as a promising candidate for magnetic hyperthermia for cancer therapy.more » « less
-
Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting
Abstract Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-
b -polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering. -
A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition–fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time.more » « less
-
Abstract The highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room‐temperature‐phosphorescence (RTP)‐based oxygen detection platform by constructing core–shell nanoparticles with water‐soluble polymethyloxazoline shells and oxygen‐permeable polystyrene cores crosslinked with metal‐free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 n
m and can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.