Integrated optical phased arrays (OPAs) have enabled cutting-edge applications where optical beam steering can benefit from chip-scale integration. However, the majority of integrated OPA demonstrations to date have been limited to showing far-field beam forming and steering. There are, however, many emerging applications of integrated photonics where emission of focused light from a chip is desirable, such as in integrated optical tweezers for biophotonics, chip-based 3D printers, and trapped-ion quantum systems. To address this need, we have recently demonstrated the first near-field-focusing integrated OPAs; however, this preliminary demonstration was limited to emission at only one focal plane above the chip. In this paper, we show the first, to the best of our knowledge, spiral integrated OPAs, enabling emission of focusing beams with tunable variable focal heights for the first time. In the process, we develop the theory, explore the design parameters, and propose feed-structure architectures for such OPAs. Finally, we experimentally demonstrate an example spiral integrated OPA system fabricated in a standard silicon-photonics process, showing wavelength-tunable variable-focal-height focusing emission. This work introduces a first-of-its-kind integrated OPA architecture not previously explored or demonstrated in literature and, as such, enables new functionality for emerging applications of OPAs that require focusing operation.
more »
« less
A 160 GHz Frequency Quadrupler based on Heterogeneous Integration of GaAs Schottky Diodes onto Silicon using SU-8 for Epitaxy Transfer
An integrated frequency quadrupler operating at 160 GHz, producing 100 mW of output power, and achieving peak efficiency of 25.5% is described. The quadrupler design is based on prior art and consists of GaAs Schottky diodes with epitaxy transferred to a micromachined silicon carrier forming a heterogeneously-integrated chip. A newly-developed fabrication process that eliminates high temperature annealing and utilizes SU-8 for adhesive bonding was employed to realize the circuit. The new process improves device yield and reliability compared to previous implementations.
more »
« less
- Award ID(s):
- 1731635
- PAR ID:
- 10065057
- Date Published:
- Journal Name:
- 2018 IEEE MTT-S International Microwave Symposium (IMS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes the collaborative process for how a group of citizen science project leaders, evaluators, and researchers worked together to develop, validate, and test embedded assessments of two different volunteer science inquiry skills. The development process for creating these embedded assessments (activities integrated into the learning experience, allowing learners to demonstrate competencies) is articulated, as well as challenges encountered in assessing two science inquiry skills common in citizen science projects: notice relevant features and record standard observations. The authors investigate the extent to which the assessments were successful at achieving four criteria identified as ideal for shared embedded assessments of volunteers’ skills, namely: broadly applicable, authentic, performance-based, and integrated.more » « less
-
null (Ed.)Purpose Due to the complexity of and variations in additive manufacturing (AM) processes, there is a level of uncertainty that creates critical issues in quality assurance (QA), which must be addressed by time-consuming and cost-intensive tasks. This deteriorates the process repeatability, reliability and part reproducibility. So far, many AM efforts have been performed in an isolated and scattered way over several decades. In this paper, a systematically integrated holistic view is proposed to achieve QA for AM. Design/methodology/approach A systematically integrated view is presented to ensure the predefined part properties before/during/after the AM process. It consists of four stages, namely, QA plan, prospective validation, concurrent validation and retrospective validation. As a foundation for QA planning, a functional workflow and the required information flows are proposed by using functional design models: Icam DEFinition for Function Modeling. Findings The functional design model of the QA plan provides the systematically integrated view that can be the basis for inspection of AM processes for the repeatability and qualification of AM parts for reproducibility. Research limitations/implications A powder bed fusion process was used to validate the feasibility of this QA plan. Feasibility was demonstrated under many assumptions; real validation is not included in this study. Social implications This study provides an innovative and transformative methodology that can lead to greater productivity and improved quality of AM parts across industries. Furthermore, the QA guidelines and functional design models provide the foundation for the development of a QA architecture and management system. Originality/value This systematically integrated view and the corresponding QA plan can pose fundamental questions to the AM community and initiate new research efforts in the in-situ digital inspection of AM processes and parts.more » « less
-
3D photonics promises to expand the reach of photonics by enabling the extension of traditional applications to nonplanar geometries and adding novel functionalities that cannot be attained with planar devices. Available material options and device geometries are, however, limited by current fabrication methods. In this work, we pioneer a method that allows for placement of integrated photonic device arrays at arbitrary predefined locations in 3D using a fabrication process that capitalizes on the buckling of a 2D pattern. We present theoretical and experimental validation of the deterministic buckling process, thus demonstrating implementation of the technique to realize what we believe to be the first fully packaged 3D integrated photonics platform. Application of the platform for mechanical strain sensing is further demonstrated.more » « less
-
Summary We develop a uniform test for detecting and dating the integrated or mildly explosive behaviour of a strictly stationary generalized autoregressive conditional heteroskedasticity (GARCH) process. Namely, we test the null hypothesis of a globally stable GARCH process with constant parameters against the alternative that there is an ‘abnormal’ period with changed parameter values. During this period, the parameter-value change may lead to an integrated or mildly explosive behaviour of the volatility process. It is assumed that both the magnitude and the timing of the breaks are unknown. We develop a double-supreme test for the existence of breaks, and then provide an algorithm to identify the periods of changes. Our theoretical results hold under mild moment assumptions on the innovations of the GARCH process. Technically, the existing properties for the quasi-maximum likelihood estimation in the GARCH model need to be reinvestigated to hold uniformly over all possible periods of change. The key results involve a uniform weak Bahadur representation for the estimated parameters, which leads to weak convergence of the test statistic to the supreme of a Gaussian process. Simulations in the Appendix show that the test has good size and power for reasonably long time series. We apply the test to the conventional early-warning indicators of both the financial market and a representative of the emerging Fintech market, i.e., the Bitcoin returns.more » « less
An official website of the United States government

