Abstract The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.
more »
« less
3D integrated photonics platform with deterministic geometry control
3D photonics promises to expand the reach of photonics by enabling the extension of traditional applications to nonplanar geometries and adding novel functionalities that cannot be attained with planar devices. Available material options and device geometries are, however, limited by current fabrication methods. In this work, we pioneer a method that allows for placement of integrated photonic device arrays at arbitrary predefined locations in 3D using a fabrication process that capitalizes on the buckling of a 2D pattern. We present theoretical and experimental validation of the deterministic buckling process, thus demonstrating implementation of the technique to realize what we believe to be the first fully packaged 3D integrated photonics platform. Application of the platform for mechanical strain sensing is further demonstrated.
more »
« less
- Award ID(s):
- 1709212
- PAR ID:
- 10132810
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Photonics Research
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2327-9125
- Page Range / eLocation ID:
- Article No. 194
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium niobate on insulator (LNOI) waveguides, as an emerging technology, have proven to offer a promising platform for integrated optics, due to their strong optical confinement comparable to silicon on insulator (SOI) waveguides, while possessing the versatile properties of lithium niobate, such as high electro-optic coefficients. In this paper, we show that mode hybridization, a phenomenon widely found in vertically asymmetric waveguides, can be efficiently modulated in an LNOI ridge waveguide by electro-optic effect, leading to a polarization mode converter with 97% efficiency. Moreover, the proposed device does not require tapering or periodic poling, thereby greatly simplifying the fabrication process. It can also be actively switched by external fields. Such a platform facilitates technological progress of photonics circuits and sensors.more » « less
-
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution ofQfactors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve aQfactor within 1 order of magnitude of the material limit.more » « less
-
AbstractThis article presents an overview of the current status and future prospects of integrated nonlinear photonics in the long-wave infrared (LWIR) spectrum, spanning 6 to 14 μm. This range is well-suited for applications such as chemical identification, environmental monitoring, surveillance, search and rescue, and night vision. Nevertheless, the advancement of a mature, low-loss chip-level platform for the LWIR remains in its infancy. We examine the materials growth techniques, and fabrication methods associated with integrated nonlinear photonics in the LWIR, highlighting promising platforms like chalcogenide glass, single-crystalline diamond, Ge/SiGe, and III–V compounds. Furthermore, we explore loss mechanisms, dispersion engineering, nonlinear generation of broadband supercontinuum and frequency combs, and device performance, encompassing photodetectors and modulators. Lastly, we propose a roadmap for the future development of integrated nonlinear photonics in the LWIR. Graphic Abstractmore » « less
-
Programmable photonic circuits of reconfigurable interferometers can be used to implement arbitrary operations on optical modes, providing a flexible platform for accelerating tasks in quantum simulation, signal processing, and artificial intelligence. A major obstacle to scaling up these systems is static fabrication error, where small component errors within each device accrue to produce significant errors within the circuit computation. Mitigating this error usually requires numerical optimization dependent on real-time feedback from the circuit, which can greatly limit the scalability of the hardware. Here we present a deterministic approach to correcting circuit errors by locally correcting hardware errors within individual optical gates. We apply our approach to simulations of large scale optical neural networks and infinite impulse response filters implemented in programmable photonics, finding that they remain resilient to component error well beyond modern day process tolerances. Our results highlight a potential way to scale up programmable photonics to hundreds of modes with current fabrication processes.more » « less
An official website of the United States government
