We introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.
3D photonics promises to expand the reach of photonics by enabling the extension of traditional applications to nonplanar geometries and adding novel functionalities that cannot be attained with planar devices. Available material options and device geometries are, however, limited by current fabrication methods. In this work, we pioneer a method that allows for placement of integrated photonic device arrays at arbitrary predefined locations in 3D using a fabrication process that capitalizes on the buckling of a 2D pattern. We present theoretical and experimental validation of the deterministic buckling process, thus demonstrating implementation of the technique to realize what we believe to be the first fully packaged 3D integrated photonics platform. Application of the platform for mechanical strain sensing is further demonstrated.
- Award ID(s):
- 1709212
- Publication Date:
- NSF-PAR ID:
- 10132810
- Journal Name:
- Photonics Research
- Volume:
- 8
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 194
- ISSN:
- 2327-9125
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Lithium niobate (LN), possessing wide transparent window, strong electro-optic effect, and large optical nonlinearity, is an ideal material platform for integrated photonics application. Microring resonators are particularly suitable as integrated photonic components, given their flexibility of device engineering and their potential for large-scale integration. However, the susceptibility to temperature fluctuation has become a major challenge for their implementation in a practical environment. Here, we demonstrate an athermal LN microring resonator. By cladding an x-cut LN microring resonator with a thin layer of titanium oxide, we are able to completely eliminate the first-order thermo-optic coefficient (TOC) of cavity resonance right at room temperature (20°C), leaving only a small residual quadratic temperature dependence with a second-order TOC of only 0.37 pm/K2. It corresponds to a temperature-induced resonance wavelength shift within 0.33 nm over a large operating temperature range of (−10 – 50)°C that is one order of magnitude smaller than a bare LN microring resonator. Moreover, the TiO2-cladded LN microring resonator is able to preserve high optical quality, with an intrinsic optical Q of 5.8 × 105that is only about 11% smaller than that of a bare LN resonator. The flexibility of thermo-optic engineering, high optical quality, and device fabrication compatibility show great promisemore »
-
Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designsmore »
-
Programmable photonic circuits of reconfigurable interferometers can be used to implement arbitrary operations on optical modes, providing a flexible platform for accelerating tasks in quantum simulation, signal processing, and artificial intelligence. A major obstacle to scaling up these systems is static fabrication error, where small component errors within each device accrue to produce significant errors within the circuit computation. Mitigating this error usually requires numerical optimization dependent on real-time feedback from the circuit, which can greatly limit the scalability of the hardware. Here we present a deterministic approach to correcting circuit errors by locally correcting hardware errors within individual optical gates. We apply our approach to simulations of large scale optical neural networks and infinite impulse response filters implemented in programmable photonics, finding that they remain resilient to component error well beyond modern day process tolerances. Our results highlight a potential way to scale up programmable photonics to hundreds of modes with current fabrication processes.
-
Optical isolators, while commonplace in bulk and fiber optical systems, remain a key missing component in integrated photonics. Isolation using magneto-optic materials has been difficult to integrate into complementary metal–oxide–semiconductor (CMOS) fabrication platforms, motivating the use of other paths to effective non-reciprocity such as temporal modulation. We demonstrate a non-reciprocal element comprising a pair of microring modulators and a microring phase shifter in an active silicon photonic process, which, in combination with standard bandpass filters, yields an isolator on-chip. Isolation up to 13 dB is measured with a 3 dB bandwidth of 2 GHz and insertion loss of 18 dB. We also show transmission of a 4 Gbps optical data signal through the isolator while retaining a wide-open eye diagram. This compact design, in combination with increased modulation efficiency, could enable modulator-based isolators to become a standard ‘black-box’ component in integrated photonics CMOS foundry platform component libraries.