skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: 3D integrated photonics platform with deterministic geometry control

3D photonics promises to expand the reach of photonics by enabling the extension of traditional applications to nonplanar geometries and adding novel functionalities that cannot be attained with planar devices. Available material options and device geometries are, however, limited by current fabrication methods. In this work, we pioneer a method that allows for placement of integrated photonic device arrays at arbitrary predefined locations in 3D using a fabrication process that capitalizes on the buckling of a 2D pattern. We present theoretical and experimental validation of the deterministic buckling process, thus demonstrating implementation of the technique to realize what we believe to be the first fully packaged 3D integrated photonics platform. Application of the platform for mechanical strain sensing is further demonstrated.

 
more » « less
Award ID(s):
1709212
NSF-PAR ID:
10132810
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Volume:
8
Issue:
2
ISSN:
2327-9125
Page Range / eLocation ID:
Article No. 194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.

     
    more » « less
  2. Abstract

    3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide‐ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin‐film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio‐interfaces and multifunctional microsystems.

     
    more » « less
  3. Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely 2D and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of 3D micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally decoupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring‐crosses, ring‐disks, two‐floor ribbons, flowers, umbrellas, triple‐cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, micro‐electromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting, and others.

     
    more » « less
  4. Abstract

    We introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.

     
    more » « less
  5. Lithium niobate (LN), possessing wide transparent window, strong electro-optic effect, and large optical nonlinearity, is an ideal material platform for integrated photonics application. Microring resonators are particularly suitable as integrated photonic components, given their flexibility of device engineering and their potential for large-scale integration. However, the susceptibility to temperature fluctuation has become a major challenge for their implementation in a practical environment. Here, we demonstrate an athermal LN microring resonator. By cladding an x-cut LN microring resonator with a thin layer of titanium oxide, we are able to completely eliminate the first-order thermo-optic coefficient (TOC) of cavity resonance right at room temperature (20°C), leaving only a small residual quadratic temperature dependence with a second-order TOC of only 0.37 pm/K2. It corresponds to a temperature-induced resonance wavelength shift within 0.33 nm over a large operating temperature range of (−10 – 50)°C that is one order of magnitude smaller than a bare LN microring resonator. Moreover, the TiO2-cladded LN microring resonator is able to preserve high optical quality, with an intrinsic optical Q of 5.8 × 105that is only about 11% smaller than that of a bare LN resonator. The flexibility of thermo-optic engineering, high optical quality, and device fabrication compatibility show great promise of athermal LN/TiO2hybrid devices for practical applications, elevating the potential importance of LN photonic integrated circuits for future communication, sensing, nonlinear and quantum photonics.

     
    more » « less