skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Deep Feature Interpolation for Image Content Changes
We propose Deep Feature Interpolation (DFI), a new data-driven baseline for automatic high-resolution image transformation. As the name suggests, it relies only on simple linear interpolation of deep convolutional features from pre-trained convnets. We show that despite its simplicity, DFI can perform high-level semantic transformations like "make older/younger", "make bespectacled", "add smile", among others, surprisingly well - sometimes even matching or outperforming the state-of-the-art. This is particularly unexpected as DFI requires no specialized network architecture or even any deep network to be trained for these tasks. DFI therefore can be used as a new baseline to evaluate more complex algorithms and provides a practical answer to the question of which image transformation tasks are still challenging in the rise of deep learning.  more » « less
Award ID(s):
1525919
NSF-PAR ID:
10065068
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
CVPR 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditionally, a high-performance microscope with a large numerical aperture is required to acquire high-resolution images. However, the images’ size is typically tremendous. Therefore, they are not conveniently managed and transferred across a computer network or stored in a limited computer storage system. As a result, image compression is commonly used to reduce image size resulting in poor image resolution. Here, we demonstrate custom convolution neural networks (CNNs) for both super-resolution image enhancement from low-resolution images and characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer histopathological images by using a combination of generator and discriminator networks so-called super-resolution generative adversarial network-based on aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The results provide high enhancement in image quality where the peak signal-to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, respectively. The derived performance is superior to the results obtained from both the bicubic interpolation and the well-known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image segmentation from the generated high-resolution breast cancer images derived with our model with an average Intersection over Union of 0.869 and an average dice similarity coefficient of 0.893 for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt and Inception U-net Models, which applied the weights from the individually trained SRGAN-ResNeXt and inception U-net models as the pre-trained weights for transfer learning. The jointly trained model’s results are progressively improved and promising. We anticipate these custom CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI) systems to acquire high-resolution images from low-performance microscopes located in remote-constraint settings.

     
    more » « less
  2. null (Ed.)
    We propose a Deep Interaction Prediction Net- work (DIPN) for learning to predict complex interactions that ensue as a robot end-effector pushes multiple objects, whose physical properties, including size, shape, mass, and friction coefficients may be unknown a priori. DIPN “imagines” the effect of a push action and generates an accurate synthetic image of the predicted outcome. DIPN is shown to be sample efficient when trained in simulation or with a real robotic system. The high accuracy of DIPN allows direct integration with a grasp network, yielding a robotic manipulation system capable of executing challenging clutter removal tasks while being trained in a fully self-supervised manner. The overall network demonstrates intelligent behavior in selecting proper actions between push and grasp for completing clutter removal tasks and significantly outperforms the previous state-of-the- art. Remarkably, DIPN achieves even better performance on the real robotic hardware system than in simulation. 
    more » « less
  3. Abstract Purpose

    Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full‐field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning‐based method used FFDM images as the ground truth, and trained a single neural network to directly generate SDM images with similar appearances (e.g., intensity distribution, textures) to the FFDM images. However, the FFDM image has a different texture pattern from DBT. The difference in texture pattern might make the training of the neural network unstable and result in high‐intensity distortion, which makes it hard to decrease intensity distortion and increase perceptual similarity (e.g., generate similar textures) at the same time. Clinically, radiologists want to have a 2D synthesized image that feels like an FFDM image in vision and preserves local structures such as both mass and microcalcifications (MCs) in DBT because radiologists have been trained on reading FFDM images for a long time, while local structures are important for diagnosis. In this study, we proposed to use a deep convolutional neural network to learn the transformation to generate SDM from DBT.

    Method

    To decrease intensity distortion and increase perceptual similarity, a multi‐scale cascaded network (MSCN) is proposed to generate low‐frequency structures (e.g., intensity distribution) and high‐frequency structures (e.g., textures) separately. The MSCN consist of two cascaded sub‐networks: the first sub‐network is used to predict the low‐frequency part of the FFDM image; the second sub‐network is used to generate a full SDM image with textures similar to the FFDM image based on the prediction of the first sub‐network. The mean‐squared error (MSE) objective function is used to train the first sub‐network, termed low‐frequency network, to generate a low‐frequency SDM image. The gradient‐guided generative adversarial network's objective function is to train the second sub‐network, termed high‐frequency network, to generate a full SDM image with textures similar to the FFDM image.

    Results

    1646 cases with FFDM and DBT were retrospectively collected from the Hologic Selenia system for training and validation dataset, and 145 cases with masses or MC clusters were independently collected from the Hologic Selenia system for testing dataset. For comparison, the baseline network has the same architecture as the high‐frequency network and directly generates a full SDM image. Compared to the baseline method, the proposed MSCN improves the peak‐to‐noise ratio from 25.3 to 27.9 dB and improves the structural similarity from 0.703 to 0.724, and significantly increases the perceptual similarity.

    Conclusions

    The proposed method can stabilize the training and generate SDM images with lower intensity distortion and higher perceptual similarity.

     
    more » « less
  4. The key idea of current deep learning methods for dense prediction is to apply a model on a regular patch centered on each pixel to make pixel-wise predictions. These methods are limited in the sense that the patches are determined by network architecture instead of learned from data. In this work, we propose the dense transformer networks, which can learn the shapes and sizes of patches from data. The dense transformer networks employ an encoder-decoder architecture, and a pair of dense transformer modules are inserted into each of the encoder and decoder paths. The novelty of this work is that we provide technical solutions for learning the shapes and sizes of patches from data and efficiently restoring the spatial correspondence required for dense prediction. The proposed dense transformer modules are differentiable, thus the entire network can be trained. We apply the proposed networks on biological image segmentation tasks and show superior performance is achieved in comparison to baseline methods.

     
    more » « less
  5. It is a common practice to think of a video as a sequence of images (frames), and re-use deep neural network models that are trained only on images for similar analytics tasks on videos. In this paper, we show that this “leap of faith” that deep learning models that work well on images will also work well on videos is actually flawed.We show that even when a video camera is viewing a scene that is not changing in any humanperceptible way, and we control for external factors like video compression and environment (lighting), the accuracy of video analytics application fluctuates noticeably. These fluctuations occur because successive frames produced by the video camera may look similar visually, but are perceived quite differently by the video analytics applications.We observed that the root cause for these fluctuations is the dynamic camera parameter changes that a video camera automatically makes in order to capture and produce a visually pleasing video. The camera inadvertently acts as an “unintentional adversary” because these slight changes in the image pixel values in consecutive frames, as we show, have a noticeably adverse impact on the accuracy of insights from video analytics tasks that re-use image-trained deep learning models. To address this inadvertent adversarial effect from the camera, we explore the use of transfer learning techniques to improve learning in video analytics tasks through the transfer of knowledge from learning on image analytics tasks. Our experiments with a number of different cameras, and a variety of different video analytics tasks, show that the inadvertent adversarial effect from the camera can be noticeably offset by quickly re-training the deep learning models using transfer learning. In particular, we show that our newly trained Yolov5 model reduces fluctuation in object detection across frames, which leads to better tracking of objects (∼40% fewer mistakes in tracking). Our paper also provides new directions and techniques to mitigate the camera’s adversarial effect on deep learning models used for video analytics applications. 
    more » « less