skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Ionic Strength on Arsenate Adsorption at Aluminum Hydroxide–Water Interfaces
Adsorption processes at mineral–water interfaces control the fate and transport of arsenic in soils and aquatic systems. Mechanistic and thermodynamic models to describe this phenomenon only consider inner-sphere complexes but recent observation of the simultaneous adsorption of inner- and outer-sphere arsenate on single crystal surfaces complicates this picture. In this study, we investigate the ionic strength-dependence of the macroscopic adsorption behavior and molecular-scale surface speciation of arsenate bound to gibbsite and bayerite. Arsenate adsorption decreases with increasing ionic strength on both minerals, with a larger effect at pH 4 than pH 7. The observed pH-dependence corresponds with a substantial decrease in surface charge at pH 7, as indicated by zeta-potential measurements. Extended X-ray absorption fine structure (EXAFS) spectroscopy finds that the number of second shell Al neighbors around arsenate is lower than that required for arsenate to occur solely as an inner-sphere surface complex. Together, these observations demonstrate that arsenate displays macroscopic and molecular-scale behavior consistent with the co-occurrence of inner- and outer-sphere surface complexes. This demonstrated that outer-sphere species can be responsible for strong adsorption of ions and suggests that environments experiencing an increase in salt content may induce arsenic release to water, especially under weakly acidic conditions.  more » « less
Award ID(s):
1505532
PAR ID:
10065096
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soil Systems
Volume:
2
Issue:
1
ISSN:
2571-8789
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO3–), sulfate (SO42–), and arsenate (AsO43–). Although the mechanism of Fh transformation and oxyanion complexation have been separately studied, the effect of surface complex type and strength on the rate and pathway remains only partly understood. We have developed a kinetic model that describes the effects of surface complex type and strength on Fh transformation to goethite (Gt) and hematite (Hm). Two sets of oxyanion-adsorbed Fh samples were prepared, nonbuffered and buffered, aged at 70 ± 1.5 °C, and then characterized using synchrotron X-ray scattering methods and wet chemical analysis. Kinetic modeling showed a significant decrease in the rate of Fh transformation for oxyanion surface complexes dominated by strong inner-sphere (SO42– and AsO43–) versus weak outer-sphere (NO3–) bonding and the control. The results also showed that the Fh transformation pathway is influenced by the type of surface complex such that with increasing strength of bonding, a smaller fraction of Gt forms compared with Hm. These findings are important for understanding and predicting the role of Fh in controlling the transport and fate of metal and metalloid oxyanions in natural and applied systems. 
    more » « less
  2. Abstract Sorption ofmyo‐inositol hexakisphosphate (IHP), a common type of organic phosphorus in soils, largely controls its mobility and bioavailability. Research on the interaction between IHP and phyllosilicate minerals such as kaolinite, which is commonly present in highly weathered soils, has often been neglected, probably due to the common assumption that negatively charged phyllosilicate minerals have low sorption capacity and binding affinity to IHP and thus do not play any significant role in its fate. Here, the interaction between IHP and poorly crystallized kaolinite (KGa‐2) was investigated in batch experiments using Zeta (ζ) potential measurement and31P nuclear magnetic resonance (NMR) spectroscopy. The results showed that dissolved Al(III) concentration at the adsorption initiation stage increased with increasing IHP concentration at pH 4.0. From pH 2.5 to 9.0, IHP presented a maximum sorption capacity (50 μmol g−1) at pH 4.0 at 24 hr. With IHP sorption, theζpotential of kaolinite first decreased sharply to a negative value, then gradually increased with resorption of Al(III) released from kaolinite dissolution at acidic pH, and finally approached the original value of the pure kaolinite.31P NMR spectroscopy andζpotential analyses revealed that IHP formed inner‐sphere surface complexes and aluminium phytate precipitated on kaolinite at low pH (2.5 and 4.0), whereas the formation of inner‐sphere surface complexes was the dominant sorption mechanism at pH ≥ 5.5. This study implies that various mechanisms, depending on ambient pH condition, can dominate the IHP sorption onto kaolinite, which impacts the mobility and bioavailability of phosphorus in highly weathered soils. HighlightsIHP promotes the dissolution of kaolinite mainly through the formation of aluminium phytate complex.IHP sorption presents a sharp maximum at pH 4.0.IHP forms inner‐sphere complexes at the surface of kaolinite.Formation of aluminium phytate surface precipitates is favourable at relatively low pH. 
    more » « less
  3. Transition-metal ions regularly undergo charge transfer (CT) by directly interacting with electrodes, and this CT governs the performance of devices for numerous applications like energy storage and catalysis. These CT reactions are deemed inner sphere because they involve direct formation of a chemical bond between the electrode and the metal ion. Predicting inner-sphere CT kinetics on electrodes using simple physicochemical descriptors would aid the design of electrochemical systems with improved kinetics. Herein, we report that the average energy of the d electrons (i.e., d-band center) of a transition-metal electrode rationalizes the kinetic trends of inner-sphere CT of transition-metal ions. We demonstrate that V2+/V3+, an important redox reaction for flow batteries, is an inner-sphere reaction and that the kinetic parameters correlate with the adsorption strength of the vanadium intermediate on Au, Ag, Cu, Bi, and W electrodes, with W being the most active electrode reported to date. We show that the adsorption strength of the vanadium intermediate linearly correlates with the d-band center such that the d-band center serves as a simple descriptor for the V2+/V3+ kinetics. We extract kinetic data from the literature for four other inner-sphere CT reactions of metal ions involving Cr-, Fe-, and Co-based complexes to show that the d-band center also linearly correlates with kinetic trends for these systems. The d-band center of the electrode is a general descriptor for heterogeneous inner-sphere CT because it correlates with the adsorption strength of the metal-ion intermediate. The d-band center descriptor is analogous to the d-electron configuration of metal ions serving as a descriptor for homogeneous inner-sphere CT because the d-electron configuration controls bond strengths of intermediate metal-ion complexes. 
    more » « less
  4. Based on tunable properties, engineered nanoparticles (NPs) hold significant promise for water treatment technologies. Motivated by concerns regarding toxicity and non-biodegradability of some nanoparticles, we explored engineered magnetite (Fe 3 O 4 ) nanoparticles with a biocompatible coating. These were prepared with a coating of rhamnolipid, a biosurfactant primarily obtained from Pseudomonas aeruginosa . By optimizing synthesis and phase transfer conditions, particles were observed to be monodispersed and stable in water under environmentally relevant pH and ionic strength values. These materials were evaluated for U( vi ) removal from water at varying dissolved inorganic carbon and pH conditions. The rhamnolipid-coated iron oxide nanoparticles (IONPs) showed high sorption capacities at pH 6 and pH 8 in both carbonate-free systems and systems in equilibrium with atmospheric CO 2 . Equilibrium sorption behavior was interpreted using surface complexation modeling (SCM). Two models (diffuse double layer and non-electrostatic) were evaluated for their ability to account for U( vi ) binding to the carboxyl groups of the rhamnolipid coating as a function of the pH, total U( vi ) loading, and dissolved inorganic carbon concentration. The diffuse double layer model provided the best simulation of the adsorption data and was sensitive to U( vi ) loadings as it accounted for the change in the surface charge associated with U( vi ) adsorption. 
    more » « less
  5. With drinking water regulations forthcoming for per- and polyfluoroalkyl substances (PFAS), the need for cost-effective treatment technologies has become urgent. Adsorption is a key process for removing or concentrating PFAS from water; however, conventional adsorbents operated in packed beds suffer from mass transfer limitations. The objective of this study was to assess the mass transfer performance of a porous polyamide adsorptive membrane for removing PFAS from drinking water under varying conditions. We conducted batch equilibrium and dynamic adsorption experiments for perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluorobutanesulfonic acid, and undecafluoro-2-methyl-3-oxahexanoic acid (i.e., GenX). We assessed various operating and water quality parameters, including flow rate (pore velocity), pH, ionic strength (IS), and presence of dissolved organic carbon. Outcomes revealed that the porous adsorptive membrane was a mass transfer-efficient platform capable of achieving dynamic capacities similar to equilibrium capacities at fast interstitial velocities. The adsorption mechanism of PFAS to the membrane was a mixture of electrostatic and hydrophobic interactions, with pH and IS controlling which interaction was dominant. The adsorption capacity of the membrane was limited by its surface area, but its site density was approximately five times higher than that of granular activated carbon. With advances in molecular engineering to increase the capacity, porous adsorptive membranes are well suited as alternative adsorbent platforms for removing PFAS from drinking water. 
    more » « less