Adsorption processes at mineral–water interfaces control the fate and transport of arsenic in soils and aquatic systems. Mechanistic and thermodynamic models to describe this phenomenon only consider inner-sphere complexes but recent observation of the simultaneous adsorption of inner- and outer-sphere arsenate on single crystal surfaces complicates this picture. In this study, we investigate the ionic strength-dependence of the macroscopic adsorption behavior and molecular-scale surface speciation of arsenate bound to gibbsite and bayerite. Arsenate adsorption decreases with increasing ionic strength on both minerals, with a larger effect at pH 4 than pH 7. The observed pH-dependence corresponds with a substantial decrease in surface charge at pH 7, as indicated by zeta-potential measurements. Extended X-ray absorption fine structure (EXAFS) spectroscopy finds that the number of second shell Al neighbors around arsenate is lower than that required for arsenate to occur solely as an inner-sphere surface complex. Together, these observations demonstrate that arsenate displays macroscopic and molecular-scale behavior consistent with the co-occurrence of inner- and outer-sphere surface complexes. This demonstrated that outer-sphere species can be responsible for strong adsorption of ions and suggests that environments experiencing an increase in salt content may induce arsenic release to water, especially under weakly acidic conditions.
more »
« less
Adsorption and precipitation of myo ‐inositol hexakisphosphate onto kaolinite
Abstract Sorption ofmyo‐inositol hexakisphosphate (IHP), a common type of organic phosphorus in soils, largely controls its mobility and bioavailability. Research on the interaction between IHP and phyllosilicate minerals such as kaolinite, which is commonly present in highly weathered soils, has often been neglected, probably due to the common assumption that negatively charged phyllosilicate minerals have low sorption capacity and binding affinity to IHP and thus do not play any significant role in its fate. Here, the interaction between IHP and poorly crystallized kaolinite (KGa‐2) was investigated in batch experiments using Zeta (ζ) potential measurement and31P nuclear magnetic resonance (NMR) spectroscopy. The results showed that dissolved Al(III) concentration at the adsorption initiation stage increased with increasing IHP concentration at pH 4.0. From pH 2.5 to 9.0, IHP presented a maximum sorption capacity (50 μmol g−1) at pH 4.0 at 24 hr. With IHP sorption, theζpotential of kaolinite first decreased sharply to a negative value, then gradually increased with resorption of Al(III) released from kaolinite dissolution at acidic pH, and finally approached the original value of the pure kaolinite.31P NMR spectroscopy andζpotential analyses revealed that IHP formed inner‐sphere surface complexes and aluminium phytate precipitated on kaolinite at low pH (2.5 and 4.0), whereas the formation of inner‐sphere surface complexes was the dominant sorption mechanism at pH ≥ 5.5. This study implies that various mechanisms, depending on ambient pH condition, can dominate the IHP sorption onto kaolinite, which impacts the mobility and bioavailability of phosphorus in highly weathered soils. HighlightsIHP promotes the dissolution of kaolinite mainly through the formation of aluminium phytate complex.IHP sorption presents a sharp maximum at pH 4.0.IHP forms inner‐sphere complexes at the surface of kaolinite.Formation of aluminium phytate surface precipitates is favourable at relatively low pH.
more »
« less
- Award ID(s):
- 1709724
- PAR ID:
- 10454508
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- European Journal of Soil Science
- Volume:
- 71
- Issue:
- 2
- ISSN:
- 1351-0754
- Format(s):
- Medium: X Size: p. 226-235
- Size(s):
- p. 226-235
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. The strong phosphorus (P) sorption capacity of iron (Fe)and aluminum (Al) minerals in highly weathered, acidic soils of humidtropical forests is generally assumed to be an important driver of Plimitation to plants and microbial activity in these ecosystems. Humidtropical forest soils often experience fluctuating redox conditions thatreduce Fe and raise pH. It is commonly thought that Fe reduction generallydecreases the capacity and strength of P sorption. Here we examined theeffects of 14 d oxic and anoxic incubations on soil P sorption dynamics inhumid tropical forest soils from Puerto Rico. Contrary to the conventionalbelief, soil P sorption capacity did not decrease under anoxic conditions,suggesting that soil minerals remain strong P sinks even under reducingconditions. Sorption of P occurred very rapidly in these soils, with atleast 60 % of the added P disappearing from the solution within 6 h.Estimated P sorption capacities were much higher, often by an order ofmagnitude, than the soil total P contents. However, the strength of Psorption under reducing conditions was weaker, as indicated by the increasedsolubility of sorbed P in NaHCO3 solution. Our results show that highlyweathered soil minerals can retain P even under anoxic conditions, where itmight otherwise be susceptible to leaching. Anoxic events can alsopotentially increase P bioavailability by decreasing the strength, ratherthan the capacity, of P sorption. These results improve our understanding ofthe redox effects on biogeochemical cycling in tropical forests.more » « less
-
Nadeem, Habibullah (Ed.)Phytate is a dominant form of organic phosphorus (P) in the environment. Complexation and precipitation with polyvalent metal ions can stabilize phytate, thereby significantly hinder the hydrolysis by enzymes. Here, we studied the stability and hydrolyzability of environmentally relevant metal phytate complexes (Na, Ca, Mg, Cu, Zn, Al, Fe, Al/Fe, Mn, and Cd) under different pHs, presence of metal chelators, and thermal conditions. Our results show that the order of solubility of metal phytate complexes is as follows: i) for metal species: Na, Ca, Mg > Cu, Zn, Mn, Cd > Al, Fe, ii) under different pHs: pH 5.0 > pH 7.5), and iii) in the presence of chelators: EDTA> citric acid. Phytate-metal complexes are mostly resistant towards acid hydrolysis (except Al-phytate), and dry complexes are generally stable at high pressure and temperature under autoclave conditions (except Ca phytate). Inhibition of metal complex towards enzymatic hydrolysis by Aspergillus niger phytase was variable but found to be highest in Fe phytate complex. Strong chelating agents such as EDTA are insufficient for releasing metals from the complexes unless the reduction of metals (such as Fe) occurs first. The insights gained from this research are expected to contribute to the current understanding of the fate of phytate in the presence of various metals that are commonly present in agricultural soils.more » « less
-
Abstract BACKGROUNDThe strongest genetic drivers of late‐onset Alzheimer's disease (AD) are apolipoprotein E4 (ApoE4) and TREM2R47H. Despite their critical roles, the mechanisms underlying their interactions remain poorly understood. METHODSWe conducted microsecond‐long molecular dynamics simulations of TREM2‐ApoE complexes, including TREM2R47H, validating our findings through comparison with published experimental data on TREM2‐ApoE binding interactions. RESULTSOur simulations reveal TREM2WTcan sample an “open” CDR2 conformation, challenging the prevailing notion that this conformation is pathogenic. TREM2WTexhibits greater flexibility, accessing diverse CDR2 conformations, while rigidity in TREM2R47H’s CDR2 may explain its reduced ligand‐binding properties. ApoE2 facilitates dynamic reconfiguration of TREM2‐ApoE2 complexes, which is absent with ApoE4. TREM2R47Hand ApoE4 mutually rigidify each other, suppressing interfacial flexibility. DISCUSSIONOur findings suggest mechanisms underlying ApoE2's neuroprotective functions, ApoE4's pathogenicity, and the synergistic effects of ApoE4 and TREM2R47Hin AD. TREM2WT’s flexibility and reconfiguration with ApoE2 may support microglial activation, while rigidity in TREM2R47H‐ApoE4 interactions may drive pathogenic signaling. HighlightsTREM2WTsamples diverse CDR2 conformations, challenging prior assumptions that an “open” CDR2 state is solely pathogenic.ApoE2 promotes dynamic reconfiguration of TREM2‐ApoE2 complexes, preserving TREM2WT's flexibility.ApoE4's hinge forms a unique binding pocket that enhances TREM2 binding.The TREM2R47H‐ApoE4 complex exhibits mutual rigidity, suppressing CDR2 and hinge flexibility.more » « less
-
Background and Aims Rice accounts for around 20% of the calories consumed by humans. Essential nutrients like zinc (Zn) are crucial for rice growth and for populations relying on rice as a staple food. No well-established study method exists. As a result, we a lack a clear picture of the chemical forms of zinc in rice grain. Furthermore, we do not understand the effects of widespread and variable zinc deficiency in soils on the Zn speciation, and to a lesser extent, its concentration, in grain. Methods The composition and Zn speciation of Cambodian rice grain is analyzed using synchrotron-based microprobe X-ray fluorescence (µ-XRF) and extended X-ray absorption fine-structure spectroscopy (EXAFS). We developed a method to quantify Zn species in different complexes based on the coordination numbers of Zn to oxygen and sulfur at characteristic bond lengths. Results Zn levels in brown rice grain ranged between 15-30 mg kg-1 and were not correlated to Zn availability in soils. 72%-90% of Zn in rice grains is present as Zn-phytate, generally not bioavailable, while smaller quantities of Zn are bound as labile nicotianamine complexes, Zn minerals like ZnCO3¬ or thiols. Conclusion Zn speciation in rice grain is affected by Zn deficiency more than previously recognized. A majority of Zn was bound in phytate complexes in rice grain. Zinc phytate complexes were found in higher concentrations and also in higher proportions, in Zn-deficient soils, consistent with increased phytate production under Zn deficiency. Phytates are generally not bioavailable to humans, so low soil Zn fertility may not only impact grain yields, but also decrease the fraction of grain Zn bioavailable to human consumers. The potential impact of abundant Zn-phytate in environments deficient in Zn on human bioavailability and Zn deficiency requires additional research.more » « less
An official website of the United States government
