Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development
- Award ID(s):
- 1748105
- PAR ID:
- 10065129
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 95
- Issue:
- 5
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- 892 to 908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recently, researchers have been attempting to control pluripotent stem cell fate or generate self-organized tissues from stem cells. Advances in bioengineering enable generation of organotypic structures, which capture the cellular components, spatial cell organization and even some functions of tissues or organs in development. However, only a few engineering tools have been utilized to regulate the formation and organization of spatially complex tissues derived from stem cells. Here, we provide a review of recent progress in the culture of organotypic structures in vitro , focusing on how microengineering approaches including geometric confinement, extracellular matrix (ECM) property modulation, spatially controlled biochemical factors, and external forces, can be utilized to generate organotypic structures. Moreover, we will discuss potential technologies that can be applied to further control both soluble and insoluble factors spatiotemporally in vitro . In summary, advanced engineered approaches have a great promise in generating miniaturized tissues and organs in a reproducible fashion, facilitating the cellular and molecular understanding of embryogenesis and morphogenesis processes.more » « less
-
Metabolic engineering seeks to reprogram microbial cells to efficiently and sustainably produce value-added compounds. Since chemical production can be at odds with the cell’s natural objectives, strategies have been developed to balance conflicting goals. For example, dynamic regulation modulates gene expression to favor biomass and metabolite accumulation at low cell densities before diverting key metabolic fluxes toward product formation. To trigger changes in gene expression in a pathway-independent manner without the need for exogenous inducers, researchers have coupled gene expression to quorum-sensing (QS) circuits, which regulate transcription based on cell density. While effective, studies thus far have been limited to one control point. More challenging pathways may require layered dynamic regulation strategies, motivating the development of a generalizable tool for regulating multiple sets of genes. We have developed a QS-based regulation tool that combines components of the lux and esa QS systems to simultaneously and dynamically up- and down-regulate expression of 2 sets of genes. Characterization of the circuit revealed that varying the expression level of 2 QS components leads to predictable changes in switching dynamics and that using components from 2 QS systems allows for independent tuning capability. We applied the regulation tool to successfully address challenges in both the naringenin and salicylic acid synthesis pathways. Through these case studies, we confirmed the benefit of having multiple control points, predictable tuning capabilities, and independently tunable regulation modules.more » « less
-
In this paper, we introduce the design and implementation of a low-cost, small-scale autonomous vehicle equipped with an onboard computer, a camera, a Lidar, and some other accessories. We implement various autonomous driving-related modules including mapping and localization, object detection, obstacle avoidance, and path planning. In order to better test the system, we focus on the autonomous parking scenario. In this scenario, the vehicle is able to move from an appointed start point to the desired parking lot autonomously by following a path planned by the hybrid A* algorithm. The vehicle is able to detect objects and avoid obstacles on its path and achieve autonomous parking.more » « less
An official website of the United States government
