Prototyping and validating hardware–software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt to develop such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single- and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path-planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things.
more »
« less
Design and Implementation of a Small-scale Autonomous Vehicle for Autonomous Parking
In this paper, we introduce the design and implementation of a low-cost, small-scale autonomous vehicle equipped with an onboard computer, a camera, a Lidar, and some other accessories. We implement various autonomous driving-related modules including mapping and localization, object detection, obstacle avoidance, and path planning. In order to better test the system, we focus on the autonomous parking scenario. In this scenario, the vehicle is able to move from an appointed start point to the desired parking lot autonomously by following a path planned by the hybrid A* algorithm. The vehicle is able to detect objects and avoid obstacles on its path and achieve autonomous parking.
more »
« less
- Award ID(s):
- 1917300
- PAR ID:
- 10354458
- Date Published:
- Journal Name:
- 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE)
- Page Range / eLocation ID:
- 398 - 402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an integrated motion planning system for autonomous vehicle (AV) parking in the presence of other moving vehicles. The proposed system includes 1) a hybrid environment predictor that predicts the motions of the surrounding vehicles and 2) a strategic motion planner that reacts to the predictions. The hybrid environment predictor performs short-term predictions via an extended Kalman filter and an adaptive observer. It also combines short-term predictions with a driver behavior cost-map to make long-term predictions. The strategic motion planner comprises 1) a model predictive control-based safety controller for trajectory tracking; 2) a search-based retreating planner for finding an evasion path in an emergency; 3) an optimization-based repairing planner for planning a new path when the original path is invalidated. Simulation validation demonstrates the effectiveness of the proposed method in terms of initial planning, motion prediction, safe tracking, retreating in an emergency, and trajectory repairing.more » « less
-
The goal of this study was to analyze the impact of private autonomous vehicles (PAVs), specifically their near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated mode choice and simulation-based parking assignment model, along with an iterative solution approach, to analyze the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. The dynamic simulation-based parking assignment model determines the parking location choice of each traveler as a function of the spatial–temporal demand for parking from the mode choice model, whereas the multinomial logit mode choice model determines mode splits based on the costs and service quality of each travel mode coming, in part, from the parking assignment model. The paper presents a case study to illustrate the power of the modeling framework. The case study varies the percentage of persons with a private vehicle (PV) who own a PAV versus a private conventional vehicle (PCV). The results indicated that PAV owners traveled an extra 0.11 to 1.51 mi compared with PCV owners on average, and the PV mode share was significantly higher for PAV owners. Therefore, as PCVs are converted into PAVs in the future, the results indicate substantial increases in VMT near activity destinations. However, the results also indicated that adjusting parking fees and redistributing parking lot capacities could reduce VMT. The significant increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading miles near activity locations, as the automated era comes closer.more » « less
-
Advances in information technologies and vehicle automation have birthed new transportation services, including shared autonomous vehicles (SAVs). Shared autonomous vehicles are on-demand self-driving taxis, with flexible routes and schedules, able to replace personal vehicles for many trips in the near future. The siting and density of pick-up and drop-off (PUDO) points for SAVs, much like bus stops, can be key in planning SAV fleet operations, since PUDOs impact SAV demand, route choices, passenger wait times, and network congestion. Unlike traditional human-driven taxis and ride-hailing vehicles like Lyft and Uber, SAVs are unlikely to engage in quasi-legal procedures, like double parking or fire hydrant pick-ups. In congested settings, like central business districts (CBD) or airport curbs, SAVs and others will not be allowed to pick up and drop off passengers wherever they like. This paper uses an agent-based simulation to model the impact of different PUDO locations and densities in the Austin, Texas CBD, where land values are highest and curb spaces are coveted. In this paper 18 scenarios were tested, varying PUDO density, fleet size and fare price. The results show that for a given fare price and fleet size, PUDO spacing (e.g., one block vs. three blocks) has significant impact on ridership, vehicle-miles travelled, vehicle occupancy, and revenue. A good fleet size to serve the region’s 80 core square miles is 4000 SAVs, charging a $1 fare per mile of travel distance, and with PUDOs spaced three blocks of distance apart from each other in the CBD.more » « less
-
Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of mechanical, electrical, electronic, computing and information subsystems. Furthermore, the individual constituent technologies employed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems. Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles. Particularly, we discuss leveraging multidisciplinary codesign practices along with virtual, hybrid and physical prototyping and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE Ecosystem. We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach.more » « less
An official website of the United States government

