skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributed Partial Clustering
Recent years have witnessed an increasing popularity of algorithm design for distributed data, largely due to the fact that massive datasets are often collected and stored in different locations. In the distributed setting communication typically dominates the query processing time. Thus it becomes crucial to design communication efficient algorithms for queries on distributed data. Simultaneously, it has been widely recognized that partial optimizations, where we are allowed to disregard a small part of the data, provide us significantly better solutions. The motivation for disregarded points often arise from noise and other phenomena that are pervasive in large data scenarios. In this paper we focus on partial clustering problems, k-center, k-median and k-means, in the distributed model, and provide algorithms with communication sublinear of the input size. As a consequence we develop the first algorithms for the partial k-median and means objectives that run in subquadratic running time. We also initiate the study of distributed algorithms for clustering uncertain data, where each data point can possibly fall into multiple locations under certain probability distribution.  more » « less
Award ID(s):
1633215
PAR ID:
10065146
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 29th ACM Symposium on Parallelism in Algorithms and Architectures
Page Range / eLocation ID:
143 to 152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hierarchical clustering is a fundamental tool in data mining, machine learning and statistics. Popular hierarchical clustering algorithms include top-down divisive approaches such as bisecting k-means, k-median, and k-center and bottom-up agglomerative approaches such as single- linkage, average-linkage, and centroid-linkage. Unfortunately, only a few scalable hierarchical clustering algorithms are known, mostly based on the single-linkage algorithm. So, as datasets increase in size every day, there is a pressing need to scale other popular methods. We introduce efficient distributed algorithms for bisecting k-means, k- median, and k-center as well as centroid-linkage. In particular, we first formalize a notion of closeness for a hierarchical clustering algorithm, and then we use this notion to design new scalable distributed methods with strong worst case bounds on the running time and the quality of the solutions. Finally, we show experimentally that the introduced algorithms are efficient and close to their sequential variants in practice. 
    more » « less
  2. Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on relational data without the need for pre-computing the join query results. For the relational k-median clustering, we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means clustering on the results of q on D, we propose randomized (1+ε)γ-approximation algorithms that run in roughly O(k2Nfhw)+T_γ(k2) time, where ε ∈ (0,1) is a constant parameter decided by the user, \fhw is the fractional hyper-tree width of Q, while γ and T_γ(x) represent the approximation factor and the running time, respectively, of a traditional clustering algorithm in the standard computational setting over x points. 
    more » « less
  3. Bansal, Nikhil and (Ed.)
    his paper presents universal algorithms for clustering problems, including the widely studied k-median, k-means, and k-center objectives. The input is a metric space containing all potential client locations. The algorithm must select k cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an (α, β)-approximation if for all subsets of clients C', it satisfies sol(C') ≤ α ⋅ opt(C') + β ⋅ mr, where opt(C') is the cost of the optimal solution for clients C' and mr is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of k-median, k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other 𝓁_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering. 
    more » « less
  4. In this paper we introduce and formally study the problem of $$k$$-clustering with faulty centers. Specifically, we study the faulty versions of $$k$$-center, $$k$$-median, and $$k$$-means clustering, where centers have some probability of not existing, as opposed to prior work where clients had some probability of not existing. For all three problems we provide fixed parameter tractable algorithms, in the parameters $$k$$, $$d$$, and $$\eps$$, that $$(1+\eps)$$-approximate the minimum expected cost solutions for points in $$d$$ dimensional Euclidean space. For Faulty $$k$$-center we additionally provide a 5-approximation for general metrics. Significantly, all of our algorithms have only a linear dependence on $$n$$. 
    more » « less
  5. This article presentsuniversalalgorithms for clustering problems, including the widely studiedk-median,k-means, andk-center objectives. The input is a metric space containing allpotentialclient locations. The algorithm must selectkcluster centers such that they are a good solution foranysubset of clients that actually realize. Specifically, we aim for lowregret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solutionSolfor a clustering problem is said to be an α , β-approximation if for all subsets of clientsC, it satisfiessol(C) ≤ α ċopt(C′) + β ċmr, whereopt(C′ is the cost of the optimal solution for clients (C′) andmris the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives ofk-median,k-means, andk-center that achieve (O(1),O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other ℓp-objectives and the setting where some subset of the clients arefixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1),O(1))-approximation is the strongest type of guarantee obtainable for universal clustering. 
    more » « less