skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preliminary Results from a Study Investigating the Transition from Capstone Design to Industry
This study investigates engineering students’ transitions from academic to professional environments by examining the role capstone design courses play in preparing graduates for the workplace. To better understand how capstone design experiences contribute to graduates’ professional preparation, we are collecting data from participants from four different institutions with project-based capstone courses as they begin post-graduation positions in a variety of engineering workplaces. Through quantitative and qualitative methods, our study is designed to collect insights from participants in their first 12 months on the job. Currently we are collecting and analyzing data from the first of two planned cohorts of participants. Preliminary results for the participants in the first cohort point towards interesting trends regarding participants’ frequency of activities and perception of their preparedness. Professional skills such as team meetings were listed most frequently as activities engaged in by participants, and while there were particular areas such as budgeting where participants felt less prepared, overall their perception of preparedness indicates that capstone design courses and the larger engineering curriculum they are housed within are preparing students for professional careers.  more » « less
Award ID(s):
1607811
PAR ID:
10065279
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 Capstone Design Conference Proceedings
Page Range / eLocation ID:
1-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In preparing engineering students for the workplace, capstone classes provide unique opportunities for students to develop their professional identities and learn critical skills such as engineering design, teamwork, and self-directed learning (Lutz & Paretti). But while existing research explores what and how students learn within these courses, we know much less about how capstone courses affect students’ transitions into the workplace. To address this gap, we are following 62 new graduates across 4 institutions during the participants’ first 12 weeks of work. Participants were drawn from 3 mechanical engineering programs and one general engineering program. Women were intentionally oversampled in the study, with 29 participants identifying as female. Weekly surveys were used to collect quantitative data on what types of workplace activities participants engaged in (e.g., team meetings, project budgeting, CAD modeling, engineering calculations) and qualitative data on what challenges they experience in their early work experience. In this paper, we present a descriptive analysis of the data to identify patterns across participants. Preliminary analysis of the quantitative data suggests that the most common activities for our participants were team meetings and project planning (mentioned by >70% of participants) compared to formal presentations and project budgeting (mentioned by <30% of participants). Preliminary analysis of the qualitative data suggests that participants’ most challenging experiences clustered into two dominant groups: 1) self-directed learning, and 2) teamwork and communication. The results are intended to inform both capstone faculty and industry to identify areas of strength within current practices and areas for improvement in course design and structure and/or in industry onboarding practices. 
    more » « less
  2. Capstone design courses, an established component of undergraduate engineering curricula, offer students the opportunity to synthesize their prior engineering coursework and apply professional and technical skills towards projects with practical application. During this unique experience, capstone faculty enable mentored exploration, coaching students to navigate the design process to complete complex and open-ended projects. However, each capstone scope of work requires project specific knowledge and skills that capstone students need to independently research and comprehend. Findings from our study of recent graduates during their first year on the job suggest that self-directed learning isn’t just occurring in the capstone experience, but it is also an essential skill in professional workplaces. In this paper we share data regarding participants’ experiences relying on self-directed learning while working on their capstone projects and later in post-graduation environments. We consider the ways that capstone design educators can design course content and mentor students to help promote this critical skill and conclude by offering recommendations. 
    more » « less
  3. Substantial research over the past few decades has documented the challenges women experience both as students in engineering programs and as professionals in engineering workplaces. Few studies, however, have followed women from one context to the other to explore the ways in which school experiences, and particularly capstone experiences designed explicitly to facilitate this transition, do and do not prepare women for their work as practicing engineers. To address this gap, we draw on data from a larger multi-institution study to address the question, “How do women engineers experience the transition from school to work?” The sample for this study includes 23 participants from four different universities (three mechanical engineering programs and one engineering science program). All participants identified as “female” on a screen questionnaire that included options for transgender and gender-nonconforming, as well as an option to skip the question. The data set includes interviews with the participants conducted at the end of their capstone design course, responses to open-ended questions sent each week during their first 12 weeks of work, and interviews conducted after their first three months of work. The capstone interviews explored participants’ experiences in their capstone design course, including project role, significant challenges and accomplishments, and perceived learning, as well as their plans for and expectations of their post-graduation work. The weekly open-ended questions asked participants to describe their most significant challenge over the past week and to explain how they addressed the challenge. Finally, the three-month interviews explored participants’ work experiences, including significant challenges as well as similarities and differences between capstone experiences and work, along with their evolving definitions of engineering. To answer the research question, we will employ thematic analysis to first identify emergent codes from the data set and subsequently synthesize those codes into themes. Preliminary review of the data suggests several potential themes that include overt experiences of gender discrimination, perceptions of (lack of) belonging or competence, and cultural shifts that may not have been effectively addresses in participants’ capstone courses or broader experiences. 
    more » « less
  4. Abstract While the traditional goals of undergraduate courses are often content-based, the development of career-readiness and professional skills, such as those listed by the National Association of Colleges and Employers, are increasingly recognized as important learning outcomes. As Mammalogy courses embrace more hands-on learning activities, they provide the opportunity to embed these professional skills, which are directly relevant to many careers in science. For example, many Mammalogy courses may include projects that incorporate experimental design and data analysis that focus on quantitative literacy, in addition to technical skills including small mammal trapping and handling, or preparing voucher specimens, that focus on problem-solving and attention to detail. Here, we review the professional skills that can be developed through a Mammalogy course and evaluate evidence-based approaches to build those skills into our courses. One approach, using Course-based Undergraduate Research Experiences (CUREs), provides opportunities for both student skill development and instructor research program development. Because they invite students to participate in authentic scientific inquiry—from study design and data collection, to analysis and reporting of results—students participating in CUREs reported significant gains in their comfort with several important professional skills, including conducting field procedures, formulating and analyzing data, normalizing failure, and attempting new procedures on their own. Finally, we review the literature to demonstrate how active learning approaches inherent in CUREs can help students to build familiarity with technologies and techniques for collecting and assessing data from wild mammal populations, as well as to build important professional skills such as teamwork, leadership, problem-solving, and written and oral communication. 
    more » « less
  5. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less