skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patterns of spectral, spatial, and long‐term variability in light attenuation in an optically complex sub‐estuary
<italic>Abstract</italic> The attenuation of solar radiation controls many processes and characteristics of aquatic ecosystems and is a sentinel of larger‐scale environmental change. While light attenuation is often characterized with a single broadband diffuse attenuation coefficient of photosynthetically active radiation (KdPAR), attenuation can exhibit substantial variability across the solar spectrum and through time and space. Understanding this variability and its proximate causes may provide information to characterize large‐scale environmental change. We implemented a semi‐analyticalKdmodel in four segments of the Rhode River sub‐estuary of the Chesapeake Bay to examine spectral, spatial, and temporal variability inKdacross the ultraviolet (UV) to PAR wavelengths (290–710 nm) over the period 1986–2014. We used this model to identify wavelengths most sensitive to long‐term change, the seasonal phenology of long‐term change, and the optical constituents driving changes. The model included contributions by phytoplankton,non‐algal particulates,chromophoric dissolved organic matter (CDOM), and water. Over the period of record,Kdincreased (water transparency decreased) in both UV and PAR wavelengths, with the largest increases at the most upstream site, during summer months, and at short UV wavelengths. These increases were due primarily to an increase in non‐algal particulates, and particularly since year 2005, however there was substantial seasonality inKd. The model reveals how different changes in water quality have a differential effect on UV and PAR attenuation, and enables insight into what types of long‐term change in transparency have occurred over the long period of human impacts in the Chesapeake Bay watershed.  more » « less
Award ID(s):
1638704
PAR ID:
10065288
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
64
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present and evaluate an update to the process‐based lake model MyLake that includes a time‐varying linkage between light attenuation of both photosynthetically active radiation (PAR) and ultraviolet (UV) radiation wavelengths to changes in dissolved organic carbon (DOC). In many parts of northeastern North America and Europe, DOC in lakes has rapidly increased, leading to reduced water transparency and increases in light attenuation. These changes alter the vertical light and heat distribution that affect vertical structuring of temperature and dissolved oxygen. We use this model update to test the responsiveness of PAR and UV attenuation to short‐term fluctuations in DOC and with a test case of long‐term browning at Lake Giles (Pennsylvania). Lake Giles has browned significantly since the late 1980s, and three decades of detailed empirical data have indicated more than a doubling of DOC concentrations, and consequent increases in PAR and UV attenuation, warming surface waters, cooling deep waters, and increasing deepwater oxygen depletion. We found that the model performance improved by 16% and 52% for long‐term trends in PAR and UV attenuation, respectively, when these coefficients respond directly to in‐lake DOC concentrations. Further, long‐term trends in surface water warming, deepwater cooling, and deepwater oxygen depletion in Lake Giles were better captured by the model following this update, and were very rapid due to its high water transparency and low DOC. Hence, incorporating a responsive link between DOC and light attenuation in lake models is key to understanding long‐term lake browning patterns, mechanisms, and ecological consequences. 
    more » « less
  2. Abstract The CO2flux () from lakes to the atmosphere is a large component of the global carbon cycle and depends on the air–water CO2concentration gradient (ΔCO2) and the gas transfer velocity (k). Both ΔCO2andkcan vary on multiple timescales and understanding their contributions to is important for explaining variability in fluxes and developing optimal sampling designs. We measured and ΔCO2and derivedkfor one full ice‐free period in 18 lakes using floating chambers and estimated the contributions of ΔCO2andkto variability. Generally,kcontributed more than ΔCO2to short‐term (1–9 d) variability. With increased temporal period, the contribution ofkto variability decreased, and in some lakes resulted in ΔCO2contributing more thankto variability over the full ice‐free period. Increased contribution of ΔCO2to variability over time occurred across all lakes but was most apparent in large‐volume southern‐boreal lakes and in deeper (> 2 m) parts of lakes, whereaskwas linked to variability in shallow waters. Accordingly, knowing the variability of bothkand ΔCO2over time and space is needed for accurate modeling of from these variables. We conclude that priority in assessments should be given to direct measurements of at multiple sites when possible, or otherwise from spatially distributed measurements of ΔCO2combined withk‐models that incorporate spatial variability of lake thermal structure and meteorology. 
    more » « less
  3. Abstract Wildfire smoke often covers areas larger than the burned area, yet the impacts of smoke on nearby aquatic ecosystems are understudied. In the summer of 2018, wildfire smoke covered Castle Lake (California, USA) for 55 days. We quantified the influence of smoke on the lake by comparing the physics, chemistry, productivity, and animal ecology in the prior four years (2014–2017) to the smoke year (2018). Smoke reduced incident ultraviolet-B (UV-B) radiation by 31% and photosynthetically active radiation (PAR) by 11%. Similarly, underwater UV-B and PAR decreased by 65 and 44%, respectively, and lake heat content decreased by 7%. While the nutrient limitation of primary production did not change, shallow production in the offshore habitat increased by 109%, likely due to a release from photoinhibition. In contrast, deep-water, primary production decreased and the deep-water peak in chlorophylladid not develop, likely due to reduced PAR. Despite the structural changes in primary production, light, and temperature, we observed little significant change in zooplankton biomass, community composition, or migration pattern. Trout were absent from the littoral-benthic habitat during the smoke period. The duration and intensity of smoke influences light regimes, heat content, and productivity, with differing responses to consumers. 
    more » « less
  4. Burford, Michele (Ed.)
    Abstract The impacts of pulsed nutrient injections or extreme runoff events on marine ecosystems are far less studied than those associated with long‐term eutrophication, particularly in regard to mechanisms regulating the response of plankton community structure. Over 800 million liters of nutrient‐rich water from a fertilizer mine were discharged over a 2‐week period into Tampa Bay, Florida, in 2021, providing a unique opportunity to document the plankton response. A 3D‐coupled hydrodynamic biogeochemical model was developed to investigate this response and to understand the observed succession of a large, short diatom bloom followed by a secondaryKarenia brevisbloom that lasted through the summer. The model reproduced the observed changes in nutrient concentration, total chlorophylla, and diatom andK. brevisbiomass in Tampa Bay. With a faster growth rate and spring temperature close to the optimal window of growth, diatoms had an initial competitive advantage, with 2/3 of the nutrient uptake due to ammonium and 1/3 due to nitrate. However, exhaustion of external nutrients led to the rapid decline of the diatom bloom, and the associated particular organic nitrogen sank onto the bay sediment. Enhanced sediment release of ammonium during the weeks following, and summer remineralization of dissolved organic nitrogen provided sufficient regenerated nitrogen to support slow‐growingK. brevisthat could capitalize on low nutrient conditions. Modeling analysis largely confirmed Margalef's conceptual model ofrtoK‐selected species succession and provided additional insights into nutrient cycling supporting the initial diatom bloom and the subsequent bloom of a slow‐growing harmful algal species. 
    more » « less
  5. Climate change has affected the Arctic Ocean (AO) and its marginal seas significantly. The reduction of sea ice in the Arctic region has altered the magnitude of photosynthetically available radiation (PAR) entering the water column, impacting primary productivity. Increasing cloudiness in the atmosphere and rising turbidity in the coastal waters of the Arctic region are considered as the major factors that counteract the effect of reduced sea ice on underwater PAR. Additionally, extreme solar zenith angles and sea-ice cover in the AO increase the complexity of retrieving PAR. In this study, a PAR algorithm based on radiative transfer in the atmosphere and satellite observations is implemented to evaluate the effect of these factors on PAR in the coastal AO. To improve the performance of the algorithm, a flag is defined to identify pixels containing open-water, sea-ice or cloud. The use of flag enabled selective application of algorithms to compute the input parameters for the PAR algorithm. The PAR algorithm is validated using in situ measurements from various coastal sites in the Arctic and sub-Arctic seas. The algorithm estimated daily integrated PAR above the sea surface with an uncertainty of 19% in summer. The uncertainty increased to 24% when the algorithm was applied year-round. The PAR values at the seafloor were estimated with an uncertainty of 76%, with 36% of the samples under sea ice and/or cloud cover. The robust performance of the PAR algorithm in the pan-Arctic region throughout the year will help to effectively study the temporal and spatial variability of PAR in the Arctic coastal waters. The calculated PAR data are used to quantify the changing trend in PAR at the seafloor in the coastal AO with depth < 100 m using MODIS-Aqua data from 2003 to 2020. The general trends calculated using the pixels with average PAR > 0.415 mol m−2 day−1 at the seafloor during summer indicate that the annual average of PAR entering the water column in the coastal AO between 2003 and 2020 increased by 23%. Concurrently, due to increased turbidity, the attenuation in the water column increased by 22%. The surge in incident PAR in the water column due to retreating sea ice first led to increased PAR observed at the seafloor (∼12% between 2003 and 2014). However, in the last decade, the rapid increase in light attenuation of the water column has restricted the increase in average annual PAR reaching the bottom in the coastal AO. 
    more » « less