skip to main content


Title: Scalable ASL Sign Recognition using Model-based Machine Learning and Linguistically Annotated Corpora
We report on the high success rates of our new, scalable, computational approach for sign recognition from monocular video, exploiting linguistically annotated ASL datasets with multiple signers. We recognize signs using a hybrid framework combining state-of-the-art learning methods with features based on what is known about the linguistic composition of lexical signs. We model and recognize the sub-components of sign production, with attention to hand shape, orientation, location, motion trajectories, plus non-manual features, and we combine these within a CRF framework. The effect is to make the sign recognition problem robust, scalable, and feasible with relatively smaller datasets than are required for purely data-driven methods. From a 350-sign vocabulary of isolated, citation-form lexical signs from the American Sign Language Lexicon Video Dataset (ASLLVD), including both 1- and 2-handed signs, we achieve a top-1 accuracy of 93.3% and a top-5 accuracy of 97.9%. The high probability with which we can produce 5 sign candidates that contain the correct result opens the door to potential applications, as it is reasonable to provide a sign lookup functionality that offers the user 5 possible signs, in decreasing order of likelihood, with the user then asked to select the desired sign.  more » « less
Award ID(s):
1748016
NSF-PAR ID:
10065367
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
8th Workshop on the Representation & Processing of Sign Languages: Involving the Language Community, Language Resources and Evaluation Conference 2018
Page Range / eLocation ID:
127-132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on the high success rates of our new, scalable, computational approach for sign recognition from monocular video, exploiting linguistically annotated ASL datasets with multiple signers. We recognize signs using a hybrid framework combining state-of-the-art learning methods with features based on what is known about the linguistic composition of lexical signs. We model and recognize the sub-components of sign production, with attention to hand shape, orientation, location, motion trajectories, plus non-manual features, and we combine these within a CRF framework. The effect is to make the sign recognition problem robust, scalable, and feasible with relatively smaller datasets than are required for purely data-driven methods. From a 350-sign vocabulary of isolated, citation-form lexical signs from the American Sign Language Lexicon Video Dataset (ASLLVD), including both 1- and 2-handed signs, we achieve a top-1 accuracy of 93.3% and a top-5 accuracy of 97.9%. The high probability with which we can produce 5 sign candidates that contain the correct result opens the door to potential applications, as it is reasonable to provide a sign lookup functionality that offers the user 5 possible signs, in decreasing order of likelihood, with the user then asked to select the desired sign. 
    more » « less
  2. We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL). 
    more » « less
  3. We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL). 
    more » « less
  4. To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition. 
    more » « less
  5. To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition. 
    more » « less