skip to main content


Title: The Research Experience for Undergraduates (REU) Principal Investigators (PI) Guide: Development of a best practices website.
With the help of the National Science Foundation (NSF), many Principal Investigators (PIs) have been able to mentor undergraduates through Research Experience for Undergraduates (REU) site awards. These REU sites are critical to the development of future graduate students, but can be challenging to run due to several required skills outside the scope of most faculty members' expertise, e.g., recruiting applicants, navigating the logistics of housing visiting undergraduate students, and tracking student outcomes after their REU experiences. In recent years, REU PIs in NSF's Computer & Information Science & Engineering (CISE) Directorate have come together through PI meetings to share best practices for running a successful REU site. While PIs inevitably take different approaches to running their sites based on their research projects, there is still a need to provide new PIs with guidance on the different aspects of an REU site such as identifying resources that can assist in recruiting women and underrepresented minority applicants, providing training for graduate students acting as mentors, and strategies for keeping a mentoring connection to undergraduate researchers after they return to their home institutions. Currently, REU site preparation and orientation for new PIs is a face-to-face process that requires careful planning and significant travel costs. The REU PI Guide, a set of web-based resources at https://www.vrac.iastate.edu/cise-reu-pi-resources/, was developed to share best practices of experienced PIs and build capacity within the REU PI community in a more scalable and cost-effective way. The REU PI Guide allows PIs to look up advice and guidance when needed and share their own best practices. This paper describes our approach to designing the REU PI Guide. The Guide is a database of documents, examples, and overviews of the different aspects of running an REU site. The Guide was developed by assessing new PIs' needs at an NSF workshop for new PIs, gathering existing resources from experienced PIs, creating and refining a website, and evaluation with new PIs. The website’s content and design will be refined through on-going feedback from PIs and other REU site stakeholders. This site has the potential broader impact to share best practices with REU PIs outside the CISE directorate and significantly ease the process of engaging future scientists via REU sites.  more » « less
Award ID(s):
1647742
NSF-PAR ID:
10065693
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For more than 30 years, the US National Science Foundation's Research Experiences for Undergraduates (REU) program has supported thousands of undergraduate researchers annually and provides many students with their first research experiences in field ecology or evolution. REUs embed students in scientific communities where they apprentice with experienced researchers, build networks with their peers, and help students understand research cultures and how to work within them. REUs are thought to provide formative experiences for developing researchers that differ from experiences in a college classrooms, laboratories, or field trips. REU assessments have improved through time but they are largely ungrounded in educational theory. Thus, evaluation of long‐term impacts of REUs remains limited and best practices for using REUs to enhance student learning are repeatedly re‐invented. We describe how one sociocultural learning framework, cultural–historical activity theory (CHAT), could be used to guide data collection to characterize the effects of REU programs on participant's learning in an educationally meaningful context. CHAT embodies a systems approach to assessment that accounts for social and cultural factors that influence learning. We illustrate how CHAT has guided assessment of the Harvard Forest Summer Research Program in Ecology (HF‐SRPE), one of the longest‐running REU sites in the United States. Characterizing HF‐SRPE using CHAT helped formalize thoughts and language for the program evaluation, reflect on potential barriers to success, identify assessment priorities, and revealed important oversights in data collection.

     
    more » « less
  2. Since the summer of 2006, the NSF-funded AERIM Research Experience for Undergraduates (REU) program in the department of Mechanical Engineering at Oakland University has been offering rich research, professional development, networking and cohort-building experiences to undergraduate students in the science, technology, engineering and math (STEM) fields. With a focus on hands-on automotive and energy research projects and a proximity to many automotive companies, the program has been successful at attracting a diverse group of students. In fact, a total of 104 students from 70 different universities have participated in the program over the past 15 years, with about 70% of the participants coming from groups that have traditionally been underrepresented in engineering (women in particular). Most research projects have been team-based and have typically involved experimental and analytical work with perhaps a handful of numerical simulation-based projects over the years. Prior assessment has shown that students greatly valued and benefited from interacting with faculty mentors, industry professionals, industry tours, and each other. As a result of limitations placed on in-person meeting and on-campus activities impacted by the Covid-19 pandemic, the program had to pivot to a virtual format in the summer of 2021. This virtual format brought about several challenges and opportunities, which will be discussed in this paper. Despite the virtual format, the program was successful at attracting a diverse group of students in 2021. Twelve undergraduate students from eight different institutions took part remotely in the program and encompassed several time zones ranging from Eastern Standard Time to Alaska Standard Time. The 2021 cohort included seven women, three underrepresented minorities, and two students with a reported disability. Also noteworthy is the fact that half of the students were first generation in college students. While the PIs were happy with the student make up, running the program in a virtual format was very challenging. For one, what was traditionally a hands-on, experimental research program had to pivot to completely simulation/analytical based projects. This brought about issues related to remote access to software, time lags and difficulties with engaging students while computer simulations were running remotely. While the program was able to offer several seminars and meetings with industry professionals in a virtual fashion, it was not possible to provide industry tours or the casual conversations that would spontaneously occur when meeting face to face with industry professionals. Finally, with students logging in from their homes across the country and across different time zones rather than living together in the Oakland University dorms, the usual bonding and group interactions that would normally occur over the summer were difficult to replicate. In this paper we discuss what was learned from these challenges and how the virtual format also offered opportunities that will be utilized in future years. 
    more » « less
  3. Per National Science Foundation, the I-Corps Sites program was launched to provide research groups with infrastructure, advice, resources, networking opportunities, entrepreneurship training, and modest funding that enable their technology to transition into the marketplace directly or guide them into becoming NSF I-Corps Team applicants [1, 2]. Furthermore, several of the close to 100 existing Sites also serve student participants working on student-owned intellectual property. We are currently operating on the fourth year of our I-Corps Site grant, which has supported 11 cohorts and more than one hundred teams at a larger Southwestern university. In previous work, using pre- and post-program surveys, we evaluated student changes in perceptions of interest in entrepreneurship, confidence in defining their value proposition, and self-efficacy in entrepreneurship, and lessons learned from practicing customer discovery after their participation of the I-Corps Sites program [3]. Furthermore, we investigated how these student perceptions of interest, confidence, and entrepreneurship are associated with their decision to GO/No GO with regards to student demographics and classification (undergraduate vs. graduate students) [4]. In this study, we added new findings on the effects of the program on students’ learning to our previous work. 
    more » « less
  4. The Project-Based Scientific Research is a new interdisciplinary course developed by the National Science Foundation (NSF - IUSE) funded STEM center at _______ State University. The implementation of this new course was one of the major three goals for this five year grant to strengthen the STEM undergraduate research community at ______ State University by helping undergraduates who are interested in hands-on and/or scientific research. The course is designed to introduce undergraduate junior and senior science, engineering technology and math students to the vibrant world of real research; to build foundational skills for research; to help STEM students meet potential mentors whose research labs they might join with the goal of gaining experimental research experience while on campus. On top of course content and requirements the following goals are aimed for the student and faculty mentors to strengthen the research community; (1) helping undergraduate students who are interested in research connect with faculty partners who are committed to mentoring undergraduates in research, (2) to guide students in reading through papers that introduce the type of research being carried out in a faculty partners lab, (3) to guide students in drafting a mini-review of 5 papers relevant to that research, (4) to guide students in identifying and writing up a research proposal which they will complete in the lab of the faculty partner. The learning objectives for the students in this course are summarized as; (a) by the end of this course, all students build a foundational understanding of the principles of STEM research through the exploration and discussion of important historical interdisciplinary projects; (b) interact with faculty researchers who perform projects across STEM disciplines; (c) be able to describe the similarities and differences between experimental and theoretical STEM research; (d) explore and present several possibilities for future research topics; (e) design and present a research prospectus, complete with a review of some of the relevant literature; (f) and be prepared to continue a research project with a chosen faculty mentor or mentors. First year, six academic departments out of eight participated this new course by offering a cross-listed course for their students under one major course taught by one of the PIs at the STEM Center. All the details such as challenges faced, outcomes, resources used, faculty involved, student and faculty feedback etc. for this course will be shared with academia in the paper. 
    more » « less
  5. null (Ed.)
    This paper focuses on discussing the efforts made to engage students in multi-disciplinary research and integrate teaching and research in the areas of FTIR Spectro- microscopy and image processing and analysis. The author (PI) and co-PIs acquired a Fourier Transform Infrared (FTIR) Spectroscopic Imaging equipment through the National Science Foundation- Major Research Instrumentation (NSF- MRI) grant (#1827134). This project aims to use the equipment to conduct undergraduate and graduate research projects and teach undergraduate and graduate classes. The NSF awarded the California State University Chico (CSU Chico) $175,305 to acquire an FTIR spectrometer and microscope, which are important tools for chemical characterization of samples with infrared active molecules. FTIR Spectroscopic Imaging System especially provides accurate chemical images that reveal the variations in images’ pixels which are mappings of constituent materials of samples rather than a single visible image with slight variations. By employing this equipment in research and the Image Processing course, students can learn how to collect, process and analyze the imaging data of samples and the corresponding spectral data. The students not only will learn how to process a single chemical image, but also will work with the data cubes to consider the pixel intensities along the IR spectrum, experience working with big data, hone the skills to design experiments, analyze larger data sets, develop pre- and post-image processing techniques, and apply and refine math and programming skills. Image processing course conventionally is based on math, digital signal and systems, and requires programming skills such as Matlab, C++, and Python. along with the mentioned knowledge. Additionally, the research conducted by this equipment promotes collaboration between engineering major students and science major students. In this paper, the author will explain how collecting data through running experiments with the FTIR Spectroscopic Imaging equipment helps students visualize theory and relate it to real world problems. This paper also discusses the results of engaging undergraduate students from various majors in research. Moreover, it will discuss some of the projects that were conducted by undergraduate students and their learning outcomes. The objective of the research projects was material characterization towards contribution to health by employing FTIR Spectroscopic Imaging System. 
    more » « less