Sustainable hydrogen gas production is critical for future fuel infrastructure. Here, a series of phosphorous-doped carbon nitride materials were synthesized by thermal annealing of urea and ammonium hexafluorophosphate, and platinum was atomically dispersed within the structural scaffold by thermal refluxing with Zeise's salt forming Pt–N/P/Cl coordination interactions, as manifested in X-ray photoelectron and absorption spectroscopic measurements. The resulting materials were found to exhibit markedly enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media, as compared to the P-free counterpart. This was accounted for by P doping that led to a significantly improved charge carrier density within C 3 N 4 , and the sample with the optimal P content showed an overpotential of only −22 mV to reach the current density of 10 mA cm −2 , lower than that of commercial Pt/C (−26 mV), and a mass activity (7.1 mA μg−1Pt at −70 mV vs. reversible hydrogen electrode) nearly triple that of the latter. Results from the present study highlight the significance of P doping in the manipulation of the electronic structures of metal/carbon nitride nanocomposites for high-performance HER electrocatalysis.
more »
« less
Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets
The development of cost-effective, high-performance electrocatalysts for hydrogen evolution reaction (HER) is urgently needed. In the present study, a new type of HER catalyst was developed where ruthenium ions were embedded into the molecular skeletons of graphitic carbon nitride (C 3 N 4 ) nanosheets of 2.0 ± 0.4 nm in thickness by refluxing C 3 N 4 and RuCl 3 in water. This took advantage of the strong affinity of ruthenium ions to pyridinic nitrogen of the tri- s -triazine units of C 3 N 4 . The formation of C 3 N 4 –Ru nanocomposites was confirmed by optical and X-ray photoelectron spectroscopic measurements, which suggested charge transfer from the C 3 N 4 scaffold to the ruthenium centers. Significantly, the hybrid materials were readily dispersible in water and exhibited apparent electrocatalytic activity towards HER in acid and their activity increased with the loading of ruthenium metal centers in the C 3 N 4 matrix. Within the present experimental context, the sample saturated with ruthenium ion complexation at a ruthenium to pyridinic nitrogen atomic ratio of ca. 1 : 2 displayed the best performance, with an overpotential of only 140 mV to achieve the current density of 10 mA cm −2 , a low Tafel slope of 57 mV dec −1 , and a large exchange current density of 0.072 mA cm −2 . The activity was markedly lower when C 3 N 4 was embedded with other metal ions such as Fe 3+ , Co 3+ , Ni 3+ and Cu 2+ . This suggests minimal contributions from the C 3 N 4 nanosheets to the HER activity, and the activity was most likely due to the formation of Ru–N moieties where the synergistic interactions between the carbon nitride and ruthenium metal centers facilitated the adsorption of hydrogen. This was strongly supported by results from density functional theory calculations.
more »
« less
- Award ID(s):
- 1710408
- PAR ID:
- 10065709
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 5
- Issue:
- 34
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 18261 to 18269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Production of clean hydrogen energy from water splitting is vital for the future fuel industry, and nanocomposites have emerged as effective catalysts for the hydrogen evolution reaction (HER). In this study, Ru-CoO@SNG nanocomposites are prepared by controlled pyrolysis where Ru-CoO heterostructured nanoparticles are supported on nitrogen and sulfur codoped graphene oxide nanosheets. With a large surface area, the obtained composites exhibit a remarkable electrocatalytic activity toward HER in 1.0 M KOH with an overpotential of only −90 mV to reach the current density of 10 mA cm−2 , in comparison to −60 mV for commercial Pt/C benchmark, along with high stability. Mechanistically, codoping of sulfur and nitrogen facilitates the dispersion of the nanoparticles, and the formation of Ru-CoO heterostructures increases the active site density, reduces the electron-transfer kinetics and boosts the catalytic performance. Results from this study highlight the unique potential of structural engineering in enhancing the electrocatalytic performance of heterostructured nanocomposites.more » « less
-
Ruthenium has emerged as a promising substitute for platinum toward the hydrogen evolution/oxidation reaction (HER/HOR). Herein, ruthenium/carbon composites are prepared by magnetic induction heating (300 A, 10 s) of RuCl3, RuBr3or RuI3loaded on hollow N‐doped carbon cages (HNC). The HNC‐RuCl3‐300A sample consists of Ru nanoparticles (dia. 1.96 nm) and abundant Cl residues. HNC‐RuBr3‐300A possesses a larger nanoparticle size (≈19.36 nm) and lower content of Br residues. HNC‐RuI3‐300A contains only bulk‐like Ru agglomerates with a minimal amount of I residues, due to reduced Ru‐halide bonding interactions. Among these, HNC‐RuCl3‐300A exhibits the best HER activity in alkaline media, with a low overpotential of only −26 mV to reach 10 mA cm−2, even outperforming Pt/C, and can be used as the cathode catalyst for anion exchange membrane water electrolyzer (along with commercial RuO2as the anode catalyst), producing 0.5 A cm−2at 1.88 V for up to 100 h, a performance markedly better than that with Pt/C. HNC‐RuCl3‐300A also exhibits the best HOR activity, with a half‐wave potential (+18 mV) even lower than that of Pt/C (+35 mV). These activities are ascribed to the combined contributions of small Ru nanoparticles and Ru‐to‐halide charge transfer that weaken H adsorption.more » « less
-
Abstract Ruthenium has been hailed as a competitive alternative for platinum toward hydrogen evolution reaction (HER), a critical process in electrochemical water splitting. In this study, we successfully prepare metallic Ru nanoparticles supported on carbon paper by utilizing a novel magnetic induction heating (MIH) method. The samples are obtained within seconds, featuring a Cl‐enriched surface that is unattainable via conventional thermal annealing. The best sample within the series shows a remarkable HER activity in both acidic and alkaline media with an overpotential of only ‐23 and ‐12 mV to reach the current density of 10 mA/cm2, highly comparable to that of the Pt/C benchmark. Theoretical studies based on density functional theory show that the excellent electrocatalytic activity is accounted by the surface metal‐Cl species that facilitate charge transfer and downshift the d‐band center. Results from this study highlight the unique advantages of MIH in rapid sample preparation, where residual anion ligands play a critical role in manipulating the electronic properties of the metal surfaces and the eventual electrocatalytic activity.more » « less
-
Abstract Development of high‐performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one‐step production of Ru‐RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott‐Schottky heterojunctions significantly enhances charge transfer across the Ru‐RuO2interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 mKOH. Among the series, the sample prepares at 300 A for 10 s exhibits the best performance, with an overpotential of only −31 mV for HER and +240 mV for OER to reach the current density of 10 mA cm⁻2. Additionally, the catalyst demonstrates excellent durability, with minimal impacts of electrolyte salinity. With the sample as the bifunctional catalysts for overall water splitting, an ultralow cell voltage of 1.43 V is needed to reach 10 mA cm⁻2, 160 mV lower than that with a commercial 20% Pt/C and RuO₂/C mixture. These results highlight the significant potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting and sustainable hydrogen production from seawater.more » « less
An official website of the United States government

