skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
We introduce several new black-box reductions that significantly improve the design of adaptive and parameter-free online learning algorithms by simplifying analysis, improving regret guarantees, and sometimes even improving runtime. We reduce parameter-free online learning to online exp-concave optimization, we reduce optimization in a Banach space to one-dimensional optimization, and we reduce optimization over a constrained domain to unconstrained optimization. All of our reductions run as fast as online gradient descent. We use our new techniques to improve upon the previously best regret bounds for parameter-free learning, and do so for arbitrary norms.  more » « less
Award ID(s):
1740762
PAR ID:
10065907
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 31st Conference On Learning Theory
Volume:
75
Page Range / eLocation ID:
1493 - 1529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dasgupta, Sanjoy; Haghtalab, Nika (Ed.)
    Parameter-free algorithms are online learning algorithms that do not require setting learning rates. They achieve optimal regret with respect to the distance between the initial point and any competitor. Yet, parameter-free algorithms do not take into account the geometry of the losses. Recently, in the stochastic optimization literature, it has been proposed to instead use truncated linear lower bounds, which produce better performance by more closely modeling the losses. In particular, truncated linear models greatly reduce the problem of overshooting the minimum of the loss function. Unfortunately, truncated linear models cannot be used with parameter-free algorithms because the updates become very expensive to compute. In this paper, we propose new parameter-free algorithms that can take advantage of truncated linear models through a new update that has an “implicit” flavor. Based on a novel decomposition of the regret, the new update is efficient, requires only one gradient at each step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free properties. We also conduct an empirical study demonstrating the practical utility of our algorithms. 
    more » « less
  2. We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm achieves various new data-dependent regret bounds improving previous work. Examples include: 1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of the first-order path-lengths of all arms as well as an important negative term, which together lead to faster convergence rates for some normal form games with partial feedback; 4) a regret bound that simultaneously implies small regret when the best arm has small loss {\it and} logarithmic regret when there exists an arm whose expected loss is always smaller than those of other arms by a fixed gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is completely parameter-free. The main idea of our algorithm is to apply the optimism and adaptivity techniques to the well-known Online Mirror Descent framework with a special log-barrier regularizer. The challenges are to come up with appropriate optimistic predictions and correction terms in this framework. Some of our results also crucially rely on using a sophisticated increasing learning rate schedule. 
    more » « less
  3. null (Ed.)
    Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms -- DORM, DORM+, and AdaHedgeD -- arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models. 
    more » « less
  4. Meila, Marina; Zhang, Tong (Ed.)
    Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms—DORM, DORM+, and AdaHedgeD—arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models. 
    more » « less
  5. Abstract We consider the problem of unconstrained online convex optimization (OCO) with sub- exponential noise, a strictly more general problem than the standard OCO. In this setting, the learner receives a subgradient of the loss functions corrupted by sub-exponential noise and strives to achieve optimal regret guarantee, without knowledge of the competitor norm, i.e., in a parameter-free way. Recently, Cutkosky and Boahen (COLT 2017) proved that, given unbounded subgradients, it is impossible to guarantee a sublinear regret due to an exponential penalty. This paper shows that it is possible to go around the lower bound by allowing the observed subgradients to be unbounded via stochastic noise. However, the presence of unbounded noise in unconstrained OCO is challenging; existing algorithms do not provide near-optimal regret bounds or fail to have a guarantee. So, we design a novel parameter-free OCO algorithm for Banach space, which we call BANCO, via a reduction to betting on noisy coins. We show that BANCO achieves the optimal regret rate in our problem. Finally, we show the application of our results to obtain a parameter-free locally private stochastic subgradient descent algorithm, and the connection to the law of iterated logarithms. 
    more » « less