skip to main content

Title: Online Learning with Optimism and Delay
Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms -- DORM, DORM+, and AdaHedgeD -- arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.
Authors:
; ; ; ; ; ;
Award ID(s):
1908111 1925930 2022446
Publication Date:
NSF-PAR ID:
10275615
Journal Name:
Internation conference on machine learning
Sponsoring Org:
National Science Foundation
More Like this
  1. Meila, Marina ; Zhang, Tong (Ed.)
    Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms—DORM, DORM+, and AdaHedgeD—arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.
  2. In black-box optimization problems, we aim to maximize an unknown objective function, where the function is only accessible through feedbacks of an evaluation or simulation oracle. In real-life, the feedbacks of such oracles are often noisy and available after some unknown delay that may depend on the computation time of the oracle. Additionally, if the exact evaluations are expensive but coarse approximations are available at a lower cost, the feedbacks can have multi-fidelity. In order to address this problem, we propose a generic extension of hierarchical optimistic tree search (HOO), called ProCrastinated Tree Search (PCTS), that flexibly accommodates a delay and noise-tolerant bandit algorithm. We provide a generic proof technique to quantify regret of PCTS under delayed, noisy, and multi-fidelity feedbacks. Specifically, we derive regret bounds of PCTS enabled with delayed-UCB1 (DUCB1) and delayed-UCB-V (DUCBV) algorithms. Given a horizon T, PCTS retains the regret bound of non-delayed HOO for expected delay of O(log T), and worsens by T^((1-α)/(d+2)) for expected delays of O(T^(1-α)) for α ∈ (0,1]. We experimentally validate on multiple synthetic functions and hyperparameter tuning problems that PCTS outperforms the state-of-the-art black-box optimization methods for feedbacks with different noise levels, delays, and fidelity.
  3. We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function approximation, we consider a family of Markov games where the reward function and transition kernel possess a linear structure. Both the offline and online settings of the problems are considered. In the offline setting, we control both players and aim to find the Nash equilibrium by minimizing the duality gap. In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret. For both settings, we propose an optimistic variant of the least-squares minimax value iteration algorithm. We show that our algorithm is computationally efficient and provably achieves an [Formula: see text] upper bound on the duality gap and regret, where d is the linear dimension, H the horizon and T the total number of timesteps. Our results do not require additional assumptions on the sampling model. Our setting requires overcoming several new challenges that are absent in Markov decision processes or turn-based Markov games. In particular, to achieve optimism with simultaneous moves, we construct both upper and lower confidence bounds of the value function, and then compute the optimistic policy by solvingmore »a general-sum matrix game with these bounds as the payoff matrices. As finding the Nash equilibrium of a general-sum game is computationally hard, our algorithm instead solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our best knowledge, such a CCE-based scheme for optimism has not appeared in the literature and might be of interest in its own right.« less
  4. We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm achieves various new data-dependent regret bounds improving previous work. Examples include: 1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of the first-order path-lengths of all arms as well as an important negative term, which together lead to faster convergence rates for some normal form games with partial feedback; 4) a regret bound that simultaneously implies small regret when the best arm has small loss {\it and} logarithmic regret when there exists an arm whose expected loss is always smaller than those of other arms by a fixed gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is completely parameter-free. The main idea of our algorithm is to apply the optimism and adaptivity techniques to the well-known Online Mirror Descent framework with a special log-barrier regularizer. The challenges are to come up with appropriate optimistic predictions and correction terms in thismore »framework. Some of our results also crucially rely on using a sophisticated increasing learning rate schedule.« less
  5. https://arxiv.org/abs/2010.13724 We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate rate of O(1/T‾‾√) with respect to the gap function in smooth monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive choice of potential function at each iteration. We also show that the O(1/T‾‾√) rate is tight for all p-SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous approaches.