skip to main content


Title: Non-periodic One-gap Potentials in Quantum Mechanics
We construct a broad class of bounded potentials of the one-dimensional Schroedinger operator that have the same spectral structure as periodic finite-gap potentials, but that are neither periodic nor quasi-periodic. Such potentials, which we call primitive, are non-uniquely parametrized by a pair of positive Hoelder continuous functions defined on the allowed bands. Primitive potentials are constructed as solutions of a system of singular integral equations, which can be efficiently solved numerically. Simulations show that these potentials can have a disordered structure. Primitive potentials generate a broad class of bounded non-vanishing solutions of the KdV hierarchy, and we interpret them as an example of integrable turbulence in the framework of the KdV equation.  more » « less
Award ID(s):
1715323
NSF-PAR ID:
10066053
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geometric Methods in Physics. XXXV Workshop
Page Range / eLocation ID:
213-225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We formulate the inverse spectral theory of infinite gap Hill’s operators with bounded periodic potentials as a Riemann–Hilbert problem on a typically infinite collection of spectral bands and gaps. We establish a uniqueness theorem for this Riemann–Hilbert problem, which provides a new route to establishing unique determination of periodic potentials from spectral data. As the potentials evolve according to the Korteweg–de Vries Equation (KdV) equation, we use integrability to derive an associated Riemann–Hilbert problem with explicit time dependence. Basic principles from the theory of Riemann–Hilbert problems yield a new characterization of spectra for periodic potentials in terms of the existence of a solution to a scalar Riemann–Hilbert problem, and we derive a similar condition on the spectrum for the temporal periodicity for an evolution under the KdV equation.

     
    more » « less
  2. The spectrum of a Schrödinger operator with periodic potential generally consists of bands and gaps. In this paper, for fixed m , we consider the problem of maximizing the gap-to-midgap ratio for the m th spectral gap over the class of potentials which have fixed periodicity and are pointwise bounded above and below. We prove that the potential maximizing the m th gap-to-midgap ratio exists. In one dimension, we prove that the optimal potential attains the pointwise bounds almost everywhere in the domain and is a step-function attaining the imposed minimum and maximum values on exactly m intervals. Optimal potentials are computed numerically using a rearrangement algorithm and are observed to be periodic. In two dimensions, we develop an efficient rearrangement method for this problem based on a semi-definite formulation and apply it to study properties of extremal potentials. We show that, provided a geometric assumption about the maximizer holds, a lattice of disks maximizes the first gap-to-midgap ratio in the infinite contrast limit. Using an explicit parametrization of two-dimensional Bravais lattices, we also consider how the optimal value varies over all equal-volume lattices. 
    more » « less
  3. Abstract

    Given a suitable solutionV(tx) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$u(0,x)V(0,x)+H-1(R). Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$V(0,x)H5(R/Z)satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$V0. In that setting, it is known that$$H^{-1}(\mathbb {R})$$H-1(R)is sharp in the class of$$H^s(\mathbb {R})$$Hs(R)spaces.

     
    more » « less
  4. Time-evolution of partial differential equations is fundamental for modeling several complex dynamical processes and events forecasting, but the operators associated with such problems are non-linear. We propose a Pad´e approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and the activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce and noisy real-world datasets. The Pad´e exponential operator uses a recurrent structure with shared parameters to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Pad´e network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like epidemic forecasting (for example, COVID- 19) can be formulated as a 2D time-varying operator problem. The proposed Pad´e exponential operators yield better prediction results (53% (52%) better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models. 
    more » « less
  5. Time-evolution of partial differential equations is fundamental for modeling several complex dynamical processes and events forecasting, but the operators associated with such problems are non-linear. We propose a Pad´e approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and the activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce and noisy real-world datasets. The Pad´e exponential operator uses a recurrent structure with shared parameters to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Pad´e network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like epidemic forecasting (for example, COVID- 19) can be formulated as a 2D time-varying operator problem. The proposed Pad´e exponential operators yield better prediction results (53% (52%) better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models. 
    more » « less