skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Helical actuation on a soft inflated robot body
Continuum and soft robots can leverage routed actuation schemes to take on useful shapes with few actuated degrees of freedom. The addition of vine-like growth to soft continuum robots opens up possibilities for creating deployable structures from compact packages and allowing manipulation and grasping of objects in cluttered or difficult-to-navigate environments. Helical shapes, with constant curvature and torsion, provide a starting point for the shapes and actuation strategies required for such applications. Building on the geometric and static solutions for continuum robot kinematics given constant curvature assumptions, we develop a static model of helical actuation and present the implementation and validation of this model. We also discuss the forces applied by the soft robot when wrapped around an object that deforms the static shape, allowing a quantification of grasping capabilities.  more » « less
Award ID(s):
1637446
PAR ID:
10066102
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Soft Robotics (RoboSoft)
Page Range / eLocation ID:
245 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose and investigate a new approach to modeling variable curvature continuum robot sections, based on Euler spirals. Euler spirals, also termed Clothoids, or Cornu spirals, are those curves in which the curvature increases linearly with their arc length. In this work, Euler spirals are applied to the kinematic modeling of continuum robots for the first time. The approach was evaluated using the sections of numerous continuum robots, including two novel parallel continuum robots. Each robot consists of three parallel sections, each with three thin, long McKibben actuators. These sections are poorly modeled by the widely used constant curvature kinematic model. The constant curvature and Euler spiral models were compared and the Euler spiral method was seen to be a significantly better match for a wide range of configurations of the robot hardware. 
    more » « less
  2. Soft robots promise improved safety and capability over rigid robots when deployed near humans or in complex, delicate, and dynamic environments. However, infinite degrees of freedom and the potential for highly nonlinear dynamics severely complicate their modeling and control. Analytical and machine learning methodologies have been applied to model soft robots but with constraints: quasi-static motions, quasi-linear deflections, or both. Here, we advance the modeling and control of soft robots into the inertial, nonlinear regime. We controlled motions of a soft, continuum arm with velocities 10 times larger and accelerations 40 times larger than those of previous work and did so for high-deflection shapes with more than 110° of curvature. We leveraged a data-driven learning approach for modeling, based on Koopman operator theory, and we introduce the concept of the static Koopman operator as a pregain term in optimal control. Our approach is rapid, requiring less than 5 min of training; is computationally low cost, requiring as little as 0.5 s to build the model; and is design agnostic, learning and accurately controlling two morphologically different soft robots. This work advances rapid modeling and control for soft robots from the realm of quasi-static to inertial, laying the groundwork for the next generation of compliant and highly dynamic robots.

     
    more » « less
  3. We present a novel application of continuum robots acting as concrete hoses to support 3D printing of cementitious materials. An industrial concrete hose was fitted with a cable harness and remotely actuated via tendons. The resulting continuum hose robot exhibited non constant curvature. In order to account for this, a new geometric approach to modeling variable curvature inverse kinematics using Euler curves is introduced herein. The new closed form model does not impose any additional computational cost compared to the constant curvature model and results in a marked improvement in the observed performance. Experiments involving 3D printing with cementitious mortar using a continuum hose robot were also conducted. 
    more » « less
  4. null (Ed.)
    There has been great progress in soft robot design, manufacture, and control in recent years, and soft robots are a tool of choice for safe and robust handling of objects in conditions of uncertainty. Still, dexterous in-hand manipulation using soft robots remains a challenge. This paper introduces foam robot hands actuated by tendons sewn through a fabric glove. The flexibility of tendon actuation allows for high competence in utilizing deformation for robust in-hand manipulation. We discuss manufacturing, control, and design optimization for foam robots and demonstrate robust grasping and in-hand manipulation on a variety of different physical hand prototypes. 
    more » « less
  5. Because of the complex nature of soft robots, formulating dynamic models that are simple, efficient, and sufficiently accurate for simulation or control is a difficult task. This paper introduces an algorithm based on a recursive Newton-Euler (RNE) approach that enables an accurate and tractable lumped parameter dynamic model. This model scales linearly in computational complexity with the number of discrete segments. We validate this model by comparing it to actual hardware data from a three-joint continuum soft robot (with six degrees of freedom represented in a constant curvature kinematic model). The results show that this RNE-based model can be computed faster than real-time. We also show that with minimal system identification, a simulation performed using the dynamic model matches the real robot data with a median error of 3.15 degrees. 
    more » « less