Abstract MotivationGiven a protein of unknown function, fast identification of similar protein structures from the Protein Data Bank (PDB) is a critical step for inferring its biological function. Such structural neighbors can provide evolutionary insights into protein conformation, interfaces and binding sites that are not detectable from sequence similarity. However, the computational cost of performing pairwise structural alignment against all structures in PDB is prohibitively expensive. Alignment-free approaches have been introduced to enable fast but coarse comparisons by representing each protein as a vector of structure features or fingerprints and only computing similarity between vectors. As a notable example, FragBag represents each protein by a ‘bag of fragments’, which is a vector of frequencies of contiguous short backbone fragments from a predetermined library. Despite being efficient, the accuracy of FragBag is unsatisfactory because its backbone fragment library may not be optimally constructed and long-range interacting patterns are omitted. ResultsHere we present a new approach to learning effective structural motif presentations using deep learning. We develop DeepFold, a deep convolutional neural network model to extract structural motif features of a protein structure. We demonstrate that DeepFold substantially outperforms FragBag on protein structural search on a non-redundant protein structure database and a set of newly released structures. Remarkably, DeepFold not only extracts meaningful backbone segments but also finds important long-range interacting motifs for structural comparison. We expect that DeepFold will provide new insights into the evolution and hierarchical organization of protein structural motifs. Availability and implementationhttps://github.com/largelymfs/DeepFold
more »
« less
FlexSLiM: a Novel Approach for Short Linear Motif Discovery in Protein Sequences
Short linear motifs are 3 to 11 amino acid long peptide patterns that play important regulatory roles in modulating protein activities. Although they are abundant in proteins, it is often difficult to discover them by experiments, because of the low affinity binding and transient interaction of short linear motifs with their partners. Moreover, available computational methods cannot effectively predict short linear motifs, due to their short and degenerate nature. Here we developed a novel approach, FlexSLiM, for reliable discovery of short linear motifs in protein sequences. By testing on simulated data and benchmark experimental data, we demonstrated that FlexSLiM more effectively identifies short linear motifs than existing methods. We provide a general tool that will advance the understanding of short linear motifs, which will facilitate the research on protein targeting signals, protein post-translational modifications, and many others.
more »
« less
- Award ID(s):
- 1661414
- PAR ID:
- 10066197
- Date Published:
- Journal Name:
- ICBCB 2018 Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology
- Page Range / eLocation ID:
- 32 to 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract One of key features of intrinsically disordered regions (IDRs) is facilitation of protein–protein and protein–nucleic acids interactions. These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides (LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains. Although current predictors of MoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments, physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these inputs individually. Comparative empirical assessments using low-similarity test datasets reveal that CLIP secures area under receiver operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.more » « less
-
Abstract Short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms lie within 2.7 Å, exhibit prominent quantum mechanical characters and are connected to a wide range of essential biomolecular processes. However, exact determination of the geometry and functional roles of SHBs requires a protein to be at atomic resolution. In this work, we analyze 1260 high-resolution peptide and protein structures from the Protein Data Bank and develop a boosting based machine learning model to predict the formation of SHBs between amino acids. This model, which we name as machine learning assisted prediction of short hydrogen bonds (MAPSHB), takes into account 21 structural, chemical and sequence features and their interaction effects and effectively categorizes each hydrogen bond in a protein to a short or normal hydrogen bond. The MAPSHB model reveals that the type of the donor amino acid plays a major role in determining the class of a hydrogen bond and that the side chain Tyr-Asp pair demonstrates a significant probability of forming a SHB. Combining electronic structure calculations and energy decomposition analysis, we elucidate how the interplay of competing intermolecular interactions stabilizes the Tyr-Asp SHBs more than other commonly observed combinations of amino acid side chains. The MAPSHB model, which is freely available on our web server, allows one to accurately and efficiently predict the presence of SHBs given a protein structure with moderate or low resolution and will facilitate the experimental and computational refinement of protein structures.more » « less
-
Computational protein design has been successful in modeling fixed backbone proteins in a single conformation. However, when modeling large ensembles of flexible proteins, current methods in protein design have been insufficient. Large barriers in the energy landscape are difficult to traverse while redesigning a protein sequence, and as a result current design methods only sample a fraction of available sequence space. We propose a new computational approach that combines traditional structure-based modeling using the ROSETTA software suite with machine learning and integer linear programming to overcome limitations in the ROSETTA sampling methods. We demonstrate the effectiveness of this method, which we call BROAD, by benchmarking the performance on increasing predicted breadth of anti-HIV antibodies. We use this novel method to increase predicted breadth of naturally-occurring antibody VRC23 against a panel of 180 divergent HIV viral strains and achieve 100% predicted binding against the panel. In addition, we compare the performance of this method to state-of-the-art multistate design in ROSETTA and show that we can outperform the existing method significantly. We further demonstrate that sequences recovered by this method recover known binding motifs of broadly neutralizing anti-HIV antibodies. Finally, our approach is general and can be extended easily to other protein systems.more » « less
-
Abstract MotivationMHC Class I protein plays an important role in immunotherapy by presenting immunogenic peptides to anti-tumor immune cells. The repertoires of peptides for various MHC Class I proteins are distinct, which can be reflected by their diverse binding motifs. To characterize binding motifs for MHC Class I proteins, in vitro experiments have been conducted to screen peptides with high binding affinities to hundreds of given MHC Class I proteins. However, considering tens of thousands of known MHC Class I proteins, conducting in vitro experiments for extensive MHC proteins is infeasible, and thus a more efficient and scalable way to characterize binding motifs is needed. ResultsWe presented a de novo generation framework, coined PepPPO, to characterize binding motif for any given MHC Class I proteins via generating repertoires of peptides presented by them. PepPPO leverages a reinforcement learning agent with a mutation policy to mutate random input peptides into positive presented ones. Using PepPPO, we characterized binding motifs for around 10 000 known human MHC Class I proteins with and without experimental data. These computed motifs demonstrated high similarities with those derived from experimental data. In addition, we found that the motifs could be used for the rapid screening of neoantigens at a much lower time cost than previous deep-learning methods. Availability and implementationThe software can be found in https://github.com/minrq/pMHC. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government

