skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geotechnical Characterization of Underground Mine Excavations from UAV-Captured Photogrammetric & Thermal Imagery
Geotechnical characterization of rock masses in underground mines often involves physical measurements in supported excavations. However, unsupported stopes and drifts prevent safe access for mapping by geotechnical personnel. The advent of inexpensive, open platform unmanned aerial vehicles (UAVs) allows geotechnical personnel to characterize hazardous rock masses by utilizing traditional photogrammetric and FLIR (forward looking infrared) imagery techniques. The photogrammetric imagery can be used to capture geological structural data from the rock mass for kinematic and numerical analyses, as well as for generating geological models. In particular, the FLIR imagery has the potential to assist in identifying areas of loose rock, which typically goes unnoticed until it becomes a hazard. This paper summarizes the results of a study involving UAV flights underground at the Barrick Golden Sunlight Mine, the generation of 3D models from UAV-captured imagery, and the identification of geological data from photogrammetry models. Results confirm that the combination of off-the-shelf technologies used in this study can be successfully employed as a geotechnical tool in the underground mining environment.  more » « less
Award ID(s):
1742880
PAR ID:
10066204
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 52nd US Rock Mechanics / Geomechanics Symposium
Page Range / eLocation ID:
Paper 18-508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photogrammetry is becoming a more common method for mapping geological and structural features in underground mines. The issue of capturing geological and structural data in inaccessible areas of mines, such as those that are unsupported, remains even when utilizing photogrammetric methods; thus, geological models of mines are left with incomplete datasets. The implementation of Unmanned Aerial Vehicles (UAVs) underground has allowed for experimentation with photogrammetry conducted from a UAV platform. This paper contains the results of an investigation focused on collecting UAV-based imagery at underground locations within Barrick Gold Corporation’s Golden Sunlight Mine in Whitehall, Montana, and the use of the imagery to produce 3D models for mapping geologic features. The primary components of the study described are the underground imagery acquisition experiences and a comparison of underground photogrammetry modeling with UAV imagery using two sets of software: a) ADAM Technology’s 3DM CalibCam and 3DM Analyst and b) Bentley’s ContextCapture for 3D modeling combined with Split Engineering’s Split-FX for mapping. The lessons learned during this study may help guide future efforts using UAVs for capturing geologic data, as well as to help monitor stability in areas that are inaccessible. 
    more » « less
  2. Photogrammetric data collection and analysis techniques are increasingly being used for geotechnical characterization of rock masses, and rock slopes, in particular. There is a growing selection of software packages that can create georeferenced digital 3D models from a photoset and control points. Although each software package is able to create the desired point clouds, different techniques are used to produce them. For a geotechnical investigation, it is important to understand the accuracy of the software being used in order to have confidence in the reliability of the digital 3D models that are created. In a study similar to one conducted in conjunction with the GoldenRocks ARMA conference in 2006 (and described in Tonon and Kottenstette, 2006), a rock outcrop was selected to be the location for a digital photogrammetry model comparison. Two sets of control points were surveyed on the rock outcrop; one set was provided for the creation of each model, and one set was used to evaluate the accuracy of the model by measuring the difference in the location of the point in the model and in the survey data. An unmanned aerial vehicle (UAV) was used to collect video footage of the site. A set of still frames were extracted from the video that contain overlapping images of the rock outcrop. The set of image files was used to create models with the following photogrammetry software packages: Bentley ContextCapture, Agisoft PhotoScan, and Pix4Dmapper. The accuracy of each of the software packages was compared by quantifying the error in the control points and check points between the model and the field survey. As this comparison is intended to provide guidance for selecting software tools to aid in rock mass characterization, other features were evaluated as well, including user-friendliness. Understanding the accuracy of digital photogrammetry software is critical for justifying the use of such models in a geotechnical investigation. The advantages of these models are numerous but of little value if the data provided by the models do not adequately represent the field conditions. Bentley ContextCapture was found to have the least error in the control points and Pix4Dmapper was found to have the least error in the check points. The Bentley ContextCapture model also had the highest resolution, closely followed by the Pix4Dmapper model. Based on these qualities and several others including the general usability, Bentley ContextCapture creates the most effective models for potential geotechnical investigations. 
    more » « less
  3. High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data. 
    more » « less
  4. Digital three-dimensional (3-D) information concerning the location and condition of subsurface urban infrastructure is emerging as a potential new paradigm for aiding in the assessment, construction, emergency response, management, and planning of these vital assets. Subsurface infrastructure encompasses utilities (water, stormwater, wastewater, gas, electricity, telecommunications, steam, etc.), geotechnical formations, and the built underground (including tunnels, subways, garages and subsurface buildings). Traditional approaches for collecting location information include merging as-built drawings, historical records, and dead reckoning; and combining with information gathered by above-ground geophysical instruments, such as ground penetrating radars, magnetometers and acoustic sensors. This paper presents results of efforts aimed at using photogrammetric and augmented reality (AR) techniques to aid collecting, processing, and presenting 3-D location information. 
    more » « less
  5. Unsupervised machine learning algorithms (clustering, genetic, and principal component analysis) automate Unmanned Aerial Vehicle (UAV) missions as well as the creation and refinement of iterative 3D photogrammetric models with a next best view (NBV) approach. The novel approach uses Structure-from-Motion (SfM) to achieve convergence to a specified orthomosaic resolution by identifying edges in the point cloud and planning cameras that “view” the holes identified by edges without requiring an initial model. This iterative UAV photogrammetric method successfully runs in various Microsoft AirSim environments. Simulated ground sampling distance (GSD) of models reaches as low as 3.4 cm per pixel, and generally, successive iterations improve resolution. Besides analogous application in simulated environments, a field study of a retired municipal water tank illustrates the practical application and advantages of automated UAV iterative inspection of infrastructure using 63 % fewer photographs than a comparable manual flight with analogous density point clouds obtaining a GSD of less than 3 cm per pixel. Each iteration qualitatively increases resolution according to a logarithmic regression, reduces holes in models, and adds details to model edges. 
    more » « less