skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GPU Accelerated Sequential Quadratic Programming
Nonlinear optimization problems arise in all industries. Accelerating optimization solvers is desirable. Efforts have been made to accelerate interior point methods for large scale problems. However, since the interior point algorithm used requires many function evaluations, the acceleration of the algorithm becomes less beneficial. We introduce a way to accelerate the sequential quadratic programming method, which is characterized by minimizing function evaluations, on graphical processing units.  more » « less
Award ID(s):
1722692
PAR ID:
10066366
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science
Page Range / eLocation ID:
3-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study reinforcement learning (RL) algorithms to solve real-world decision problems with the objective of maximizing the long-term reward as well as satisfying cumulative constraints. We propose a novel first-order policy optimization method, Interior-point Policy Optimization (IPO), which augments the objective with logarithmic barrier functions, inspired by the interior-point method. Our proposed method is easy to implement with performance guarantees and can handle general types of cumulative multiconstraint settings. We conduct extensive evaluations to compare our approach with state-of-the-art baselines. Our algorithm outperforms the baseline algorithms, in terms of reward maximization and constraint satisfaction. 
    more » « less
  2. Abstract An interior-point algorithm framework is proposed, analyzed, and tested for solving nonlinearly constrained continuous optimization problems. The main setting of interest is when the objective and inequality constraint functions may be nonlinear and/or nonconvex, and when constraint values and derivatives are tractable to compute, but objective function values and derivatives can only be estimated. The algorithm is intended primarily for a setting that is similar for stochastic-gradient methods for unconstrained optimization, i.e., the setting when stochastic-gradient estimates are available and employed in place of gradients, and when no objective function values (nor estimates of them) are employed. This is achieved by the interior-point framework having a single-loop structure rather than the nested-loop structure that is typical of contemporary interior-point methods. Convergence guarantees for the framework are provided both for deterministic and stochastic settings. Numerical experiments show that the algorithm yields good performance on a large set of test problems. 
    more » « less
  3. We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm (SVRG) and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective to solve high-dimensional optimization problems, while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions. 
    more » « less
  4. We propose a bootstrap‐based calibrated projection procedure to build confidence intervals for single components and for smooth functions of a partially identified parameter vector in moment (in)equality models. The method controls asymptotic coverage uniformly over a large class of data generating processes. The extreme points of the calibrated projection confidence interval are obtained by extremizing the value of the function of interest subject to a proper relaxation of studentized sample analogs of the moment (in)equality conditions. The degree of relaxation, or critical level, is calibrated so that the function of θ , not θ itself, is uniformly asymptotically covered with prespecified probability. This calibration is based on repeatedly checking feasibility of linear programming problems, rendering it computationally attractive. Nonetheless, the program defining an extreme point of the confidence interval is generally nonlinear and potentially intricate. We provide an algorithm, based on the response surface method for global optimization, that approximates the solution rapidly and accurately, and we establish its rate of convergence. The algorithm is of independent interest for optimization problems with simple objectives and complicated constraints. An empirical application estimating an entry game illustrates the usefulness of the method. Monte Carlo simulations confirm the accuracy of the solution algorithm, the good statistical as well as computational performance of calibrated projection (including in comparison to other methods), and the algorithm's potential to greatly accelerate computation of other confidence intervals. 
    more » « less
  5. Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at each iteration to compute the search direction; thus, QLSAs can potentially speed up IPMs. Due to the noise in contemporary quantum computers, quantum-assisted IPMs (QIPMs) only admit an inexact solution to the Newton linear system. Typically, an inexact search direction leads to an infeasible solution, so, to overcome this, we propose an inexact-feasible QIPM (IF-QIPM) for solving linearly constrained quadratic optimization problems. We also apply the algorithm to ℓ1-norm soft margin support vector machine (SVM) problems, and demonstrate that our algorithm enjoys a speedup in the dimension over existing approaches. This complexity bound is better than any existing classical or quantum algorithm that produces a classical solution. 
    more » « less