skip to main content

Title: Biocatalytic removal of perchlorate and nitrate in ion-exchange waste brine
Biocatalytic technologies are characterized by targeted, rapid degradation of contaminants over a range of environmentally relevant conditions representative of groundwater, but have not yet been integrated into drinking water treatment processes. This work investigated the potential for a hybrid ion-exchange/biocatalytic process, where biocatalysis is used to treat ion-exchange waste brine, allowing reuse of the brine. The reduction rates and the fate of the regulated anions perchlorate and nitrate were tested in synthetic brines and a real-world waste brine. Biocatalysts were applied as soluble protein fractions from Azospira oryzae for perchlorate reduction and Paracoccus denitrificans and Haloferax denitrificans for nitrate reduction. In synthetic 12% brine, the biocatalysts retained activity, with rates of 32.3 ± 6.1 U (μg Mo) −1 for perchlorate ( A. oryzae ) and 16.1 ± 7.1 U (μg Mo) −1 for nitrate ( P. denitrificans ). In real-world waste brine, activities were slightly lower (20.3 ± 6.5 U (μg Mo) −1 for perchlorate and 14.3 ± 3.8 U (μg Mo) −1 for nitrate). The difference in perchlorate reduction was due to higher concentrations of nitrate, bicarbonate, and sulfate in the waste brine. The predominant end products of nitrate reduction were nitrous oxide or dinitrogen gas, depending on the source of the biocatalysts and the salt concentration. These results demonstrate biocatalytic reduction of regulated anions in a real-world waste brine, which could facilitate brine reuse for the regeneration of ion-exchange technologies and prevent reintroduction of these anions and their intermediates into the environment.  more » « less
Award ID(s):
1705804 1336620
Author(s) / Creator(s):
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Page Range / eLocation ID:
1181 to 1189
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min−1 gRu−1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min−1 gRu−1) and ammonia recovery (overall mass transfer coefficient 0.20 m h−1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater. 
    more » « less
  2. null (Ed.)
    Treating toxic monovalent anions such as NO 3 − or ClO 4 − in drinking water remains challenging due to the high capital and environmental costs associated with common technologies such as reverse osmosis or ion exchange. Capacitive deionization (CDI) is a promising technology for selective ion removal due to high reported ion selectivity for these two contaminants. However, the impacts of ion selectivity and influent water characteristics on CDI life cycle cost have not been considered. In this study we investigate the impact of ion selectivity on CDI system cost with a parameterized process model and technoeconomic analysis framework. Simulations indicate millimolar concentration contaminants such as nitrate can be removed at costs in the range of $0.01–0.30 per m 3 at reported selectivity coefficient ranges ( S = 6–10). Since perchlorate removal involves micromolar scale concentration changes, higher selectivity values than reported in literature ( S > 10 vs. S = 4–6.5) are required for comparable treatment costs. To contextualize simulated results for CDI treatment of NO 3 − , CDI unit operations were sized and costed for three case studies based on existing treatment facilities in Israel, Spain, and the United States, showing that achieving a nitrate selectivity of 10 could reduce life cycle treatment costs below $0.2 per m 3 . 
    more » « less
  3. null (Ed.)
    A rapid and sensitive method is described for measuring perchlorate (ClO 4 − ), chlorate (ClO 3 − ), chlorite (ClO 2 − ), bromate (BrO 3 − ), and iodate (IO 3 − ) ions in natural and treated waters using non-suppressed ion chromatography with electrospray ionization and tandem mass spectrometry (NS-IC-MS/MS). Major benefits of the NS-IC-MS/MS method include a short analysis time (12 minutes), low limits of quantification for BrO 3 − (0.10 μg L −1 ), ClO 4 − (0.06 μg L −1 ), ClO 3 − (0.80 μg L −1 ), and ClO 2 − (0.40 μg L −1 ), and compatibility with conventional LC-MS/MS instrumentation. Chromatographic separations were generally performed under isocratic conditions with a Thermo Scientific Dionex AS16 column, using a mobile phase of 20% 1 M aqueous methylamine and 80% acetonitrile. The isocratic method can also be optimized for IO 3 − analysis by including a gradient from the isocratic mobile phase to 100% 1 M aqueous methylamine. Four common anions (Cl − , Br − , SO 4 2− , and HCO 3 − /CO 3 2− ), a natural organic matter isolate (Suwannee River NOM), and several real water samples were tested to examine influences of natural water constituents on oxyhalide detection. Only ClO 2 − quantification was significantly affected – by elevated chloride concentrations (>2 mM) and NOM. The method was successfully applied to quantify oxyhalides in natural waters, chlorinated tap water, and waters subjected to advanced oxidation by sunlight-driven photolysis of free available chlorine (sunlight/FAC). Sunlight/FAC treatment of NOM-free waters containing 200 μg L −1 Br − resulted in formation of up to 263 ± 35 μg L −1 and 764 ± 54 μg L −1 ClO 3 − , and up to 20.1 ± 1.0 μg L −1 and 33.8 ± 1.0 μg L −1 BrO 3 − (at pH 6 and 8, respectively). NOM strongly inhibited ClO 3 − and BrO 3 − formation, likely by scavenging reactive oxygen or halogen species. As prior work shows that the greatest benefits in applying the sunlight/FAC process for purposes of improving disinfection of chlorine-resistant microorganisms are realized in waters with lower DOC levels and higher pH, it may therefore be desirable to limit potential applications to waters containing moderate DOC concentrations ( e.g. , ∼1–2 mg C L −1 ), low Br − concentrations ( e.g. , <50 μg L −1 ), and circumneutral to moderately alkaline pH ( e.g. , pH 7–8) to strike a balance between maximizing microbial inactivation while minimizing formation of oxyhalides and other disinfection byproducts. 
    more » « less
  4. Abstract

    Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate,234U,238U, δ11B,87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted asendmemberbrines. The englacial brine had higher Clconcentrations than the Blood Falls end‐member outflow; however, other constituents were similar. The isotope data indicate that the water in the brine is derived from glacier melt. The H4SiO4concentrations and U and Sr isotope suggest a high degree of chemical weathering products. The brine has a low N:P ratio of ~7.2 with most of the dissolved inorganic nitrogen in the form of NH4+. Dissolved organic carbon concentrations are similar to end‐member outflow values. Our results provide strong evidence that the original source of solutes in the brine was ancient seawater, which has been modified with the addition of chemical weathering products.

    more » « less
  5. null (Ed.)
    The decreasing cost of electricity produced using solar and wind and the need to avoid CO 2 emissions from fossil fuels has heightened interest in hydrogen gas production by water electrolysis. Offshore and coastal hydrogen gas production using seawater and renewable electricity is of particular interest, but it is currently economically infeasible due to the high costs of ion exchange membranes and the need to desalinate seawater in existing electrolyzer designs. A new approach is described here that uses relatively inexpensive commercially available membranes developed for reverse osmosis (RO) to selectively transport favorable ions. In an applied electric field, RO membranes have a substantial capacity for proton and hydroxide transport through the active layer while excluding salt anions and cations. A perchlorate salt was used to provide an inert and contained anolyte, with charge balanced by proton and hydroxide ion flow across the RO membrane. Synthetic seawater (NaCl) was used as the catholyte, where it provided continuous hydrogen gas evolution. The RO membrane resistance was 21.7 ± 3.5 Ω cm 2 in 1 M NaCl and the voltages needed to split water in a model electrolysis cell at current densities of 10–40 mA cm −2 were comparable to those found when using two commonly used, more expensive ion exchange membranes. 
    more » « less