skip to main content


Title: A Hybrid Catalytic Hydrogenation/Membrane Distillation Process for Nitrogen Recovery from Nitrate-Contaminated Waste Ion Exchange Brine
Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min−1 gRu−1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min−1 gRu−1) and ammonia recovery (overall mass transfer coefficient 0.20 m h−1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater.  more » « less
Award ID(s):
1804513
NSF-PAR ID:
10183754
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Water research
Volume:
175
ISSN:
0043-1354
Page Range / eLocation ID:
115688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biocatalytic technologies are characterized by targeted, rapid degradation of contaminants over a range of environmentally relevant conditions representative of groundwater, but have not yet been integrated into drinking water treatment processes. This work investigated the potential for a hybrid ion-exchange/biocatalytic process, where biocatalysis is used to treat ion-exchange waste brine, allowing reuse of the brine. The reduction rates and the fate of the regulated anions perchlorate and nitrate were tested in synthetic brines and a real-world waste brine. Biocatalysts were applied as soluble protein fractions from Azospira oryzae for perchlorate reduction and Paracoccus denitrificans and Haloferax denitrificans for nitrate reduction. In synthetic 12% brine, the biocatalysts retained activity, with rates of 32.3 ± 6.1 U (μg Mo) −1 for perchlorate ( A. oryzae ) and 16.1 ± 7.1 U (μg Mo) −1 for nitrate ( P. denitrificans ). In real-world waste brine, activities were slightly lower (20.3 ± 6.5 U (μg Mo) −1 for perchlorate and 14.3 ± 3.8 U (μg Mo) −1 for nitrate). The difference in perchlorate reduction was due to higher concentrations of nitrate, bicarbonate, and sulfate in the waste brine. The predominant end products of nitrate reduction were nitrous oxide or dinitrogen gas, depending on the source of the biocatalysts and the salt concentration. These results demonstrate biocatalytic reduction of regulated anions in a real-world waste brine, which could facilitate brine reuse for the regeneration of ion-exchange technologies and prevent reintroduction of these anions and their intermediates into the environment. 
    more » « less
  2. The formation of precipitates (scales) during reinjection limits the reuse of oil and gas production water (produced water) for additional oil recovery. Selective removal strategies that target Ba and Sr, the primary scale-forming cations, would limit produced water treatment costs, reduce waste generation, and increase produced water reuse. A novel treatment technique for targeted Ba and Sr removal, complexation with polyelectrolyte polymers, is compared with chemical precipitation (sulfate addition and precipitative softening) for the removal of Ba and Sr from Kansas oil field brines. Four polymers were examined for cation removal, both with and without ultrafiltration: poly-vinyl sulfonate (PVS), poly(4-styrenesulfonate) (PSS), polyacrylic acid (PAA), and poly(4-styrenesulfonic acid- co -maleic acid) (PSSM). PSSM and PSS were effective for Ba and Sr removal from the lower salinity brine (TDS of 31 000 mg L −1 ), but exhibited limited Sr removal in the absence of Ba in the high salinity brine (TDS of 92 000 mg l −1 ). Similar results were achieved in both brines using sulfate addition. PSSM used in conjunction with ultrafiltration removed >99% of initial Sr and Ba from the lower salinity brine, while removing only 65% and 78% of Mg and Ca, respectively. These results compare favorably to precipitative softening, which removed >90% of all divalent cations from the same brine but was less selective for Ba and Sr. PAA plus ultrafiltration removed 58% of Sr (and 68% of Ca) from the high-salinity brine at pH 9. While increased Sr removal can be achieved by polymer-assisted ultrafiltration, further development of this process, including methods for polymer recovery and regeneration, will be needed to improve its performance compared to precipitative softening. 
    more » « less
  3. Reactive nitrogen (Nr) is an essential nutrient to life on earth, but its mismanagement in waste has emerged as a major problem in water pollution to our ecosystems, causing severe eutrophication and health concerns. Sustainably recovering Nr [such as nitrate (NO3−)–N] and converting it into ammonia (NH3) could mitigate the environmental impacts of Nr, while reducing the NH3 demand from the carbon-intensive Haber–Bosch process. In this work, high-performance NO3−-to-NH3 conversion was achieved in a scalable, versatile, and cost-effective membrane-free alkaline electrolyzer (MFAEL): a remarkable NH3partial current density of 4.22 ± 0.25 A cm−2 with a faradaic efficiency of 84.5 ± 4.9%. The unique configuration of MFAEL allows for the continuous production of pure NH3-based chemicals (NH3 solution and solid NH4HCO3) without the need for additional separation procedures. A comprehensive techno-economic analysis (TEA) revealed the economic competitiveness of upcycling waste N from dilute sources by combining NO3− reduction in MFAEL and a low-energy cost electrodialysis process for efficient NO3− concentration. In addition, pairing NO3− reduction with the oxidation of organic Nr compounds in MFAEL enables the convergent transformation of N–O and C–N bonds into NH3 as the sole N-containing product. Such an electricity-driven process offers an economically viable solution to the growing trend of regional and seasonal Nr buildup and increasing demand for sustainable NH3 with a reduced carbon footprint. 
    more » « less
  4. In a circular nutrient economy, nitrogen and phosphorous are removed from waste streams and captured as valuable fertilizer products, to more sustainably reuse the resources in closed-loops and simultaneously protect receiving aquatic environments from harmful N and P emissions. For nutrient reclamation to be competitive with the existing practices of N fixation and P mining, the methods of recovery must achieve at least comparable energy consumption. This study employed the Gibbs free energy of separation to quantify the minimum energy required to recover various N and P fertilizer products from waste streams of fresh and hydrolyzed urine, greywater, domestic wastewater, and secondary treated wastewater effluent. The comparative advantages in theoretical energy intensities for N and P recovery from nutrient-dense waste streams, such as fresh and hydrolyzed urine, were assessed against the other more dilute sources. For example, compared to reclaiming the nutrients from treated wastewater effluent at centralized wastewater treatment plants, the minimum energy required to recover 1.0 M NH 3(aq) from source-separated hydrolyzed urine can be ≈40–68% lower, whereas recovering KH 2 PO 4(s) from diverted fresh urine can, in principle, be ≈13–34% less energy intensive. The study also evaluated the efficiencies required by separation techniques for the energy demand of N and P recovery to be lower than the current production approaches of the Haber–Bosch process and phosphate rock mining. For instance, the most energetically favorable ammoniacal nitrogen and orthophosphate reclamation schemes, which target hydrolyzed and fresh urine, respectively, require energy efficiencies >7% and >39%. This study highlights that strategic selection of waste stream and fertilizer product can enable the most expedient recovery of nutrients and realize a circular economy model for N and P management. 
    more » « less
  5. A hybrid ion-exchange and algal photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+-N concentration of the centrate (~1180 mg/L) inhibited algal growth in unamended controls, addition of zeolite reduced the ammonia toxicity due to its ion exchange capacity. Na+ was the major cation exchanged with NH4+. Growth of algae further reduced the NH4+-N concentrations. Different zeolite dosages (60, 150, and 250 g/L) resulted in different concentrations of NH4+-N in solution. Algae grown in lower zeolite dosage (60 g/L) had high protein contents. A mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4+-N concentration well. The HAPIX process is feasible for treatment of high NH4+-N strength side stream wastewaters while regulating intracellular algal biomass contents by adjusting zeolite dosages. 
    more » « less