skip to main content


Title: Occurrence of subsurface lateral flow in the Shale Hills Catchment indicated by a soil water mass balance method: A simple method to detect subsurface lateral flow
Award ID(s):
0725019 1239285 1331726
NSF-PAR ID:
10066473
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
European Journal of Soil Science
Volume:
69
Issue:
5
ISSN:
1351-0754
Page Range / eLocation ID:
771 to 786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forest mortality has been widely observed across the globe during recent episodes of drought and extreme heat events. But the future of forest mortality remains poorly understood. While the direct effects of future climate and elevated CO 2 on forest mortality risk have been studied, the role of lateral subsurface water flow has rarely been considered. Here we demonstrated the fingerprint of lateral flow on the forest mortality risk of a riparian ecosystem using a coupled plant hydraulics-hydrology model prescribed with multiple Earth System Model projections of future hydroclimate. We showed that the anticipated water-saving and drought ameliorating effects of elevated CO 2 on mortality risk were largely compromised when lateral hydrological processes were considered. Further, we found lateral flow reduce ecosystem sensitivity to climate variations, by removing soil water excess during wet periods and providing additional water from groundwater storage during dry periods. These findings challenge the prevailing expectation of elevated CO 2 to reduce mortality risk and highlight the need to assess the effects of lateral flow exchange more explicitly moving forward with forest mortality projections. 
    more » « less
  2. Abstract

    The concept of using representative hillslopes to simulate hydrologically similar areas of a catchment has been incorporated in many hydrologic models but few Earth system models. Here we describe a configuration of the Community Land Model version 5 in which each grid cell is decomposed into one or more multicolumn hillslopes. Within each hillslope, the intercolumn connectivity is specified, and the lateral saturated subsurface flow from each column is passed to its downslope neighbor. We first apply the model to simulate a headwater catchment and assess the results against runoff and evapotranspiration flux measurements. By redistributing soil water within the catchment, the model is able to reproduce the observed difference between evapotranspiration in the upland and lowland portions of the catchment. Next, global simulations based on hypothetical hillslope geomorphic parameters are used to show the model's sensitivity to differences in hillslope shape and discretization. Differences in evapotranspiration between upland and lowland hillslope columns are found to be largest in arid and semiarid regions, while humid tropical and high‐latitude regions show limited evapotranspiration increases in lowlands relative to uplands.

     
    more » « less
  3. null (Ed.)
  4. SUMMARY

    We aim to simultaneously infer the shape of subsurface structures and material properties such as density or viscosity from surface observations. Modelling mantle flow using incompressible instantaneous Stokes equations, the problem is formulated as an infinite-dimensional Bayesian inverse problem. Subsurface structures are described as level sets of a smooth auxiliary function, allowing for geometric flexibility. As inverting for subsurface structures from surface observations is inherently challenging, knowledge of plate geometries from seismic images is incorporated into the prior probability distributions. The posterior distribution is approximated using a dimension-robust Markov-chain Monte Carlo sampling method, allowing quantification of uncertainties in inferred parameters and shapes. The effectiveness of the method is demonstrated in two numerical examples with synthetic data. In a model with two higher-density sinkers, their shape and location are inferred with moderate uncertainty, but a trade-off between sinker size and density is found. The uncertainty in the inferred is significantly reduced by combining horizontal surface velocities and normal traction data. For a more realistic subduction problem, we construct tailored level-set priors, representing “seismic” knowledge and infer subducting plate geometry with their uncertainty. A trade-off between thickness and viscosity of the plate in the hinge zone is found, consistent with earlier work.

     
    more » « less