skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Occurrence of subsurface lateral flow in the Shale Hills Catchment indicated by a soil water mass balance method: A simple method to detect subsurface lateral flow
Award ID(s):
0725019 1239285 1331726
PAR ID:
10066473
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
European Journal of Soil Science
Volume:
69
Issue:
5
ISSN:
1351-0754
Page Range / eLocation ID:
771 to 786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forest mortality has been widely observed across the globe during recent episodes of drought and extreme heat events. But the future of forest mortality remains poorly understood. While the direct effects of future climate and elevated CO 2 on forest mortality risk have been studied, the role of lateral subsurface water flow has rarely been considered. Here we demonstrated the fingerprint of lateral flow on the forest mortality risk of a riparian ecosystem using a coupled plant hydraulics-hydrology model prescribed with multiple Earth System Model projections of future hydroclimate. We showed that the anticipated water-saving and drought ameliorating effects of elevated CO 2 on mortality risk were largely compromised when lateral hydrological processes were considered. Further, we found lateral flow reduce ecosystem sensitivity to climate variations, by removing soil water excess during wet periods and providing additional water from groundwater storage during dry periods. These findings challenge the prevailing expectation of elevated CO 2 to reduce mortality risk and highlight the need to assess the effects of lateral flow exchange more explicitly moving forward with forest mortality projections. 
    more » « less
  2. null (Ed.)
  3. Abstract Intermittent streams currently constitute >50% of the global river network, and the number of intermittent streams is expected to increase due to changes in land use and climate. Surface flows are known to expand and contract within the headwater channel network due to changes in the water table driven by climate, often changing seasonally. However, the underlying causes of disconnections and reconnections throughout the stream network remain poorly understood and may reflect subsurface flow capacity. We assess how 3D subsurface flowpaths control local surface flows at Gibson Jack Creek in the Rocky Mountains, Idaho, USA. Water table dynamics, hydraulic gradients, and hyporheic exchange were monitored along a 200‐m section of the stream throughout the seasonal recession in WY2018. Shallow lateral hillslope‐riparian‐stream connectivity was more frequent in transects spanning perennially flowing stream reaches than intermittent reaches. During low‐flow periods, larger losing vertical hydraulic gradients were observed in paired piezometers in intermittent reaches than in adjacent perennial reaches. Contrary to dominant conceptual models, longitudinal measurements of hydrologic exchange in both intermittent and perennial reaches were seasonally variable except for one perennial reach that showed consistent significant gains. Observed drying dynamics, as well as subsurface pathways, were highly variable even over short distances (30 m). Flow probability and subsurface flow capacity at upstream locations can be assessed with an outlet hydrograph and upstream flow measurements. Accurate characterization of subsurface storage, discharge, and connection is critical to understanding the drivers of drying cycles in intermittent streams and their likely responses to future change. 
    more » « less