skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Talakat: bullet hell generation through constrained map-elites
We describe a search-based approach to generating new levels for bullet hell games, which are action games characterized by and requiring avoidance of a very large amount of projectiles. Levels are represented using a domain-specific description language, and search in the space defined by this language is performed by a novel variant of the Map-Elites algorithm which incorporates a feasible-infeasible approach to constraint satisfaction. Simulation-based evaluation is used to gauge the fitness of levels, using an agent based on best-first search. The performance of the agent can be tuned according to the two dimensions of strategy and dexterity, making it possible to search for level configurations that require a specific combination of both. As far as we know, this paper describes the first generator for this game genre, and includes several algorithmic innovations.  more » « less
Award ID(s):
1717324
PAR ID:
10066511
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 Genetic and Evolutionary Computation Conference (GECCO)
Page Range / eLocation ID:
1047-1054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we explore the possibility of search-based agents in games with resource-intensive forward models. We implemented a player agent in the Pommerman framework and put it against the baseline agent to measure its performance. We implemented a heuristic agent and improved it by enabling depth-limited tree search in specific gameplay moments. We also compared different node selection methods during depth-limited tree search. Our result shows that depth-limited tree search is still viable when presented with inefficient forward models and exploitation-driven selection method is the most efficient in this specific domain. 
    more » « less
  2. Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma’s Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60 % more often on average, compared to learning without language. 
    more » « less
  3. Contextual influences on language often exhibit substantial cross-lingual regularities; for example, we are more verbose in situations that require finer distinctions. However, these regularities are sometimes obscured by semantic and syntactic differences. Using a newly-collected dataset of color reference games in Mandarin Chinese (which we release to the public), we confirm that a variety of constructions display the same sensitivity to contextual difficulty in Chinese and English. We then show that a neural speaker agent trained on bilingual data with a simple multitask learning approach displays more human-like patterns of context dependence and is more pragmatically informative than its monolingual Chinese counterpart. Moreover, this is not at the expense of language-specific semantic understanding: the resulting speaker model learns the different basic color term systems of English and Chinese (with noteworthy cross-lingual influences), and it can identify synonyms between the two languages using vector analogy operations on its output layer, despite having no exposure to parallel data. 
    more » « less
  4. Developing autonomous agents that can strategize and cooperate with humans under information asymmetry is challenging without effective communication in natural language. We introduce a shared-control game, where two players collectively control a token in alternating turns to achieve a common objective under incomplete information. We formulate a policy synthesis problem for an autonomous agent in this game with a human as the other player. To solve this problem, we propose a communication-based approach comprising a language module and a planning module. The language module translates natural language messages into and from a finite set of flags, a compact representation defined to capture player intents. The planning module leverages these flags to compute a policy using an asymmetric information-set Monte Carlo tree search with flag exchange algorithm we present. We evaluate the effectiveness of this approach in a testbed based on Gnomes at Night, a search-and-find maze board game. Results of human subject experiments show that communication narrows the information gap between players and enhances human-agent cooperation efficiency with fewer turns. 
    more » « less
  5. As deep reinforcement learning (RL) is applied to more tasks, there is a need to visualize and understand the behavior of learned agents. Saliency maps explain agent behavior by highlighting the features of the input state that are most relevant for the agent in taking an action. Existing perturbation-based approaches to compute saliency often highlight regions of the input that are not relevant to the action taken by the agent. Our proposed approach, SARFA (Specific and Relevant Feature Attribution), generates more focused saliency maps by balancing two aspects (specificity and relevance) that capture different desiderata of saliency. The first captures the impact of perturbation on the relative expected reward of the action to be explained. The second downweighs irrelevant features that alter the relative expected rewards of actions other than the action to be explained. We compare SARFA with existing approaches on agents trained to play board games (Chess and Go) and Atari games (Breakout, Pong and Space Invaders). We show through illustrative examples (Chess, Atari, Go), human studies (Chess), and automated evaluation methods (Chess) that SARFA generates saliency maps that are more interpretable for humans than existing approaches. 
    more » « less