skip to main content


Title: Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
As deep reinforcement learning (RL) is applied to more tasks, there is a need to visualize and understand the behavior of learned agents. Saliency maps explain agent behavior by highlighting the features of the input state that are most relevant for the agent in taking an action. Existing perturbation-based approaches to compute saliency often highlight regions of the input that are not relevant to the action taken by the agent. Our proposed approach, SARFA (Specific and Relevant Feature Attribution), generates more focused saliency maps by balancing two aspects (specificity and relevance) that capture different desiderata of saliency. The first captures the impact of perturbation on the relative expected reward of the action to be explained. The second downweighs irrelevant features that alter the relative expected rewards of actions other than the action to be explained. We compare SARFA with existing approaches on agents trained to play board games (Chess and Go) and Atari games (Breakout, Pong and Space Invaders). We show through illustrative examples (Chess, Atari, Go), human studies (Chess), and automated evaluation methods (Chess) that SARFA generates saliency maps that are more interpretable for humans than existing approaches.  more » « less
Award ID(s):
1756023
NSF-PAR ID:
10166401
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma’s Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60 % more often on average, compared to learning without language. 
    more » « less
  2. Although deep Reinforcement Learning (RL) has proven successful in a wide range of tasks, one challenge it faces is interpretability when applied to real-world problems. Saliency maps are frequently used to provide interpretability for deep neural networks. However, in the RL domain, existing saliency map approaches are either computationally expensive and thus cannot satisfy the real-time requirement of real-world scenarios or cannot produce interpretable saliency maps for RL policies. In this work, we propose an approach of Distillation with selective Input Gradient Regularization (DIGR) which uses policy distillation and input gradient regularization to produce new policies that achieve both high interpretability and computation efficiency in generating saliency maps. Our approach is also found to improve the robustness of RL policies to multiple adversarial attacks. We conduct experiments on three tasks, MiniGrid (Fetch Object), Atari (Breakout) and CARLA Autonomous Driving, to demonstrate the importance and effectiveness of our approach. 
    more » « less
  3. Existing adversarial algorithms for Deep Reinforcement Learning (DRL) have largely focused on identifying an optimal time to attack a DRL agent. However, little work has been explored in injecting efficient adversarial perturbations in DRL environments. We propose a suite of novel DRL adversarial attacks, called ACADIA, representing AttaCks Against Deep reInforcement leArning. ACADIA provides a set of efficient and robust perturbation-based adversarial attacks to disturb the DRL agent's decision-making based on novel combinations of techniques utilizing momentum, ADAM optimizer (i.e., Root Mean Square Propagation, or RMSProp), and initial randomization. These kinds of DRL attacks with novel integration of such techniques have not been studied in the existing Deep Neural Networks (DNNs) and DRL research. We consider two well-known DRL algorithms, Deep-Q Learning Network (DQN) and Proximal Policy Optimization (PPO), under Atari games and MuJoCo where both targeted and non-targeted attacks are considered with or without the state-of-the-art defenses in DRL (i.e., RADIAL and ATLA). Our results demonstrate that the proposed ACADIA outperforms existing gradient-based counterparts under a wide range of experimental settings. ACADIA is nine times faster than the state-of-the-art Carlini & Wagner (CW) method with better performance under defenses of DRL. 
    more » « less
  4. null (Ed.)
    In imperfect-information games, subgame solving is significantly more challenging than in perfect-information games, but in the last few years, such techniques have been developed. They were the key ingredient to the milestone of superhuman play in no-limit Texas hold'em poker. Current subgame-solving techniques analyze the entire common-knowledge closure of the player's current information set, that is, the smallest set of nodes within which it is common knowledge that the current node lies. However, this set is too large to handle in many games. We introduce an approach that overcomes this obstacle, by instead working with only low-order knowledge. Our approach allows an agent, upon arriving at an infoset, to basically prune any node that is no longer reachable, thereby massively reducing the game tree size relative to the common-knowledge subgame. We prove that, as is, our approach can increase exploitability compared to the blueprint strategy. However, we develop three avenues by which safety can be guaranteed. First, safety is guaranteed if the results of subgame solves are incorporated back into the blueprint. Second, we provide a method where safety is achieved by limiting the infosets at which subgame solving is performed. Third, we prove that our approach, when applied at every infoset reached during play, achieves a weaker notion of equilibrium, which we coin affine equilibrium, and which may be of independent interest. We show that affine equilibria cannot be exploited by any Nash strategy of the opponent, so an opponent who wishes to exploit must open herself to counter-exploitation. Even without the safety-guaranteeing additions, experiments on medium-sized games show that our approach always reduced exploitability even when applied at every infoset, and a depth-limited version of it led to--to our knowledge--the first strong AI for the massive challenge problem dark chess. 
    more » « less
  5. null (Ed.)
    As machine learning methods see greater adoption and implementation in high-stakes applications such as medical image diagnosis, the need for model interpretability and explanation has become more critical. Classical approaches that assess feature importance (e.g., saliency maps) do not explain how and why a particular region of an image is relevant to the prediction. We propose a method that explains the outcome of a classification black-box by gradually exaggerating the semantic effect of a given class. Given a query input to a classifier, our method produces a progressive set of plausible variations of that query, which gradually changes the posterior probability from its original class to its negation. These counter-factually generated samples preserve features unrelated to the classification decision, such that a user can employ our method as a “tuning knob” to traverse a data manifold while crossing the decision boundary. Our method is model agnostic and only requires the output value and gradient of the predictor with respect to its input. 
    more » « less