Abstract Lakes are vulnerable to climate change, and warming rates in the Arctic are faster than anywhere on Earth. Fishes are sensitive to changing temperatures, which directly control physiological processes. Food availability should partly dictate responses to climate change because energetic demands change with temperature, but few studies have simultaneously examined temperature and food availability.We used a fully factorial experiment to test effects of food availability and temperature (7.6, 12.7, and 17.4°C; 50 days) on growth, consumption, respiration, and excretion, and effects of temperature (12 and 19.3°C; 27 days) on habitat use and growth of a common, but understudied, mid‐level consumer, slimy sculpinCottus cognatus, in arctic lakes. We also used bioenergetics modelling to predict consumptive demand under future warming scenarios.Growth rates were 3.4× higher at 12.7°C in high food compared to low food treatments, but the magnitude of differences depended on temperature. Within low food treatments, there was no statistical difference in growth rates among temperatures, suggesting food limitation. Consumption, respiration, and nitrogen excretion increased with temperature independent of food availability. Lower growth rates coincided with lower phosphorus excretion at the highest temperature, suggesting that fish selectively retained phosphorus at high temperatures and low food. In habitat choice experiments, fish were more likely to use the 12°C side of the tank, closely matching their optimal temperature. We predicted a 9% increase in consumption is required to maintain observed growth under a 4°C warming scenario.These results highlight considering changes in food resources and other associated indirect effects (e.g. excretion) that accompany changing temperatures with climate change. Depending on how food webs respond to warming, fish may cope with predicted warming if density‐dependent feedback maintains population sizes.
more »
« less
A changing menu in a changing climate: Using experimental and long‐term data to predict invertebrate prey biomass and availability in lakes of arctic Alaska
Abstract Changes in seasonality associated with climate warming (e.g. temperature, growing season duration) are likely to alter invertebrate prey biomass and availability in aquatic ecosystems through direct and indirect influences on physiology and phenology, particularly in arctic lakes. However, despite warmer thermal regimes, photoperiod will remain unchanged such that potential shifts resulting from longer and warmer growing seasons could be limited by availability of sunlight, especially at lower trophic levels. Thus, a better understanding of warming effects on invertebrate prey throughout the growing season (e.g. early, peak, late) is important to understand arctic lake food‐web dynamics in a changing climate.Here, we use a multifaceted approach to evaluate prey availability to predators in lakes of arctic Alaska. In a laboratory mesocosm experiment, we measured different metrics of abundance for snails (Lymnaea elodes) and zooplankton (Daphnia middendorffiana) across three time periods (early, mid‐ and late growing season) and across three temperature and photoperiod treatments (control, increased temperature and increased temperature × photoperiod). Additionally, we used generalised additive models and generalised additive mixed‐effects models to relate long‐term empirical observations of zooplankton biomass (1983–2015) to observed temperature regimes in an arctic lake. We then simulated zooplankton biomass for the warmest temperature observations across the growing season to inform likely zooplankton biomass regimes under future change.We observed variable responses by snails and zooplankton across experiments and treatments. Early in the growing season, snail development was accelerated at multiple life stages (e.g. egg and juvenile). In mid‐season, in accordance with warmer temperatures, we observed significantly increasedDaphniaabundances. However, in the late season,Daphniaappeared to be limited by photoperiod. Confirming our experimental results, our models of zooplankton biomass showed an increase of nearly 20% in warmer years. Further, these model estimates could be conservative as the consumptive demand of fishes may increase in warmer years as well.Overall, our results highlight the importance of interactive effects of temperature and seasonality. Based primarily on temperature, we can readily predict the response of fish metabolism in warmer temperatures. However, in this context, we generally require a better understanding of climate‐driven responses of important invertebrate prey resources. Our results suggest invertebrate prey biomass and availability are likely to respond positively with climate change based on temperature and seasonality, as well as proportionally to the metabolic requirements of fish predators. While further research is necessary to understand how other food‐web components will respond climate change, our findings suggest that the fish community at the top of arctic lake food webs will have adequate prey base in a warming climate.
more »
« less
- Award ID(s):
- 1637459
- PAR ID:
- 10066656
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Freshwater Biology
- Volume:
- 63
- Issue:
- 11
- ISSN:
- 0046-5070
- Page Range / eLocation ID:
- p. 1352-1364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation.We explored fine root dynamics at three contrasting treelines in northwest Alaska. We used snowfences to increase snow depth relative to control and minirhizotrons to estimate fine root growth, standing crop, and overwinter loss.Experimental deepening of snowpacks led to warmer winter soils but did not affect growing season soil moisture. Deeper snow reduced fine root standing crop with no significant effects on overwinter fine root loss. Warmer soils in late winter were associated with warmer soils in early and mid‐summer. Warmer early summer soils may have promoted early root growth. However, warmer July soils were associated with reduced fine root growth and smaller standing crops.We hypothesize that deeper snow improves plant access to soil nutrients, resulting in reduced investment in fine roots, potentially leaving additional resources to support aboveground growth and reproduction. Our results suggest one mechanism by which deeper snow could promote northern treeline advance.more » « less
-
Abstract Climate change is creating phenological mismatches between herbivores and their plant resources throughout the Arctic. While advancing growing seasons and changing arrival times of migratory herbivores can have consequences for herbivores and forage quality, developing mismatches could also influence other traits of plants, such as above‐ and below‐ground biomass and the type of reproduction, that are often not investigated.In coastal western Alaska, we conducted a 3‐year factorial experiment that simulated scenarios of phenological mismatch by manipulating the start of the growing season (3 weeks early and ambient) and grazing times (3 weeks early, typical, 3 weeks late, or no‐grazing) of Pacific black brant (Branta bernicla nigricans), to examine how the timing of these events influence a primary goose forage species,Carex subspathacea.After 3 years, an advanced growing season compared to a typical growing season increased stem heights, standing dead biomass, and the number of inflorescences. Early season grazing compared to typical season grazing reduced above‐ and below‐ground biomass, stem height, and the number of tillers; while late season grazing increased the number of inflorescences and standing dead biomass. Therefore, an advanced growing season and late grazing had similar directional effects on most plant traits, but a 3‐week delay in grazing had an impact on traits 3–5 times greater than a similarly timed shift in the advancement of spring. In addition, changes in response to treatments for some variables, such as the number of inflorescences, were not measurable until the second year of the experiment, while other variables, such as root productivity and number of tillers, changed the direction of their responses to treatments over time.Synthesis. Factors affecting the timing of migration have a larger influence than earlier springs on an important forage species in the breeding and rearing habitats of Pacific black brant. The phenological mismatch prediction for this site of earlier springs and later goose arrival will likely increase above‐ and below‐ground biomass and sexual reproduction of the often‐clonally reproducingC. subspathacea. Finally, the implications of mismatch may be difficult to predict because some variables required successive years of mismatch to respond.more » « less
-
Abstract With rapid climate warming, some coastal high‐latitude ecosystems are experiencing more frequent tidal floods. Yet little is known about tundra plant‐community responses to flooding, and whether Arctic warming may modulate such responses.In a 2‐year, full‐factorial field experiment in coastal tundra wetlands of the Yukon‐Kuskokwim (Y‐K) Delta (western Alaska), we simulated periodic tidal flood events at two severities under both ambient and warmed summer conditions and measured above‐ground plant‐community responses. Low‐severity flooding represented overbank flooding 1 day per month, which is consistent with projections in the next 5 years. High‐severity flooding represented a more impactful flooding regime (three consecutive days per month) that is projected to occur in the next 10 years. Our warming treatment (+1°C) also represented a change projected in the next 10 years.Regardless of temperature, high‐severity flooding increased graminoid biomass by >45%, in turn increasing live plant‐community biomass by >18%. Low‐severity flooding had similar, though weaker, effects. Flooding had overall negative effects on both forb and shrub biomass, though shrub responses were weaker. Only during the second summer, warming increased graminoid biomass by 20% and tended to increase shrub biomass, regardless of flooding. Concurrently, warming enhanced standing‐dead graminoid biomass by 20%, while high‐severity flooding decreased it by 15%. Therefore, wet tundra that was both flooded and warmed had the greatest proportion of graminoids and total live biomass, but standing‐dead biomass comparable to that of unmanipulated wet tundra.Synthesis. While our manipulations simulated flooding and warming regimes expected in the wetlands of the Y‐K Delta over the same, near‐future (5‐to‐10 years) time frame, flooding had stronger effects than warming. What is striking is the rate at which graminoid increases occurred, becoming apparent after only two monthly flood events in the first experimental year. Flooding‐induced decreases in standing‐dead biomass suggests that the incorporation of dead plant material into the litter layer might be facilitated by tidal floods. These rapid increases in plant biomass and potentially biomass turnover, especially of graminoids, which are characterized by high‐quality litter, may have major implications for carbon and nutrient cycling of more frequently flooded coastal ecosystems in a warmer Arctic.more » « less
-
Abstract The Arctic is rapidly warming, and tundra vegetation community composition is changing from small, prostrate shrubs to taller, erect shrubs in some locations. Across much of the Arctic, the sensitivity of shrub secondary growth, as measured by growth ring width, to climate has changed with increased warming, but it is not fully understood how shrub age contributes to shifts in climate sensitivity.We studied Siberian alder,Alnus viridisssp.fruticosa, a large nitrogen‐fixing shrub that has responded to climate warming with northward range expansion over the last 50 years. We used serial sectioning of 26 individual shrubs and 94 cross‐sections to generate a 98‐year growth ring chronology, including one 142‐year‐old, Siberian alder in Northern Alaska. We tested how secondary growth sensitivity to climate has changed over the past century (1920–2017) and how shrub age affects climate sensitivity of alder growth through time.We found that over time, alder growth as expressed by the stand chronology became more sensitive to July mean monthly air temperature. Older shrubs displayed higher sensitivity to June and July temperature than younger alders. However, during the first 30 years of growth of any shrub, temperature sensitivity did not differ among individuals. In addition, the June temperature sensitivity of growth series from individual cross‐sections depended on the age of the attached shrub.Our results suggest that age contributes to climate sensitivity, likely through modifying internal shrub carbon budgets by changing size and reducing alder's dependence on N‐fixation over time. Older, more sensitive alder may enhance C and N‐cycling while having greater recruitment potential. Linking alder age to climate sensitivity, recruitment and total N‐inputs will enable us to better predict ecosystem carbon and nitrogen cycling in a warmer Arctic. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government
