skip to main content


Title: Possibility of carrier profiling semiconductors by terahertz spectroscopy with terahertz radiation generated in a scanning tunneling microscope
A mode-locked ultrafast laser focused on the tunneling junction of a scanning tunneling microscope (STM) superimposes harmonics of the laser pulse repetition frequency on the DC tunneling current. The power measured at each of the first 200 harmonics (up to 15 GHz) varies inversely as the square of the frequency due to stray capacitance shunting the tunneling junction. Fourier analysis suggests that in the tunneling junction the harmonics have no significant decay up to a frequency of 1/2τ ≈ 33 THz where τ = 15 fs, the laser pulse width. Two different analyses will be presented to model the generation of the frequency comb within the tunneling junction. The first is based on the observed current-voltage characteristics for the nanoscale tunneling junction. The second is a solution of the time-dependent Schrodinger equation for a modulated barrier. Both analyses indicate that optical rectification of the pulsed laser radiation in the tunneling junction causes harmonics of the pulse repetition frequency of the laser and that these harmonics may extend to terahertz frequencies. It appears that the tunneling junction may be used as a sub-nm sized source of terahertz radiation. Transmission and back scattering could not be used but loading of this source by the finite conductivity of the semiconductor would cause a loss varying inversely with the carrier density. Carrier dynamics could be measured by time-domain measurements, and time-averaged carrier profiling, but presumably with finer resolution due to the sub-nm size of the terahertz source.  more » « less
Award ID(s):
1648811
NSF-PAR ID:
10066845
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Possibility of carrier profiling semiconductors by terahertz spectroscopy with terahertz radiation generated in a scanning tunneling microscope
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μ m of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy. 
    more » « less
  2. We are developing a new method for the carrier profiling of semiconductors that shows promise for nm-resolution which is required at the new sub-10 nm lithography nodes. A modelocked ultrafast laser focused on the tunneling junction of a scanning tunneling microscope (STM) generates a regular sequence of pulses of minority carriers in the semiconductor. Each pulse of carriers has a width equal to the laser pulse width (e.g. 15 fs). In the frequency domain, this is a microwave frequency comb (MFC) with hundreds of measurable harmonics at integer multiples of the laser pulse repetition frequency (e.g. 74 MHz). After the minority carriers diverge rapidly into the semiconductor as a Coulomb explosion, the pulses become broader and decay, so that the MFC has less power with a spectrum limited to the first few harmonics. The frequency-dependent attenuation of the MFC is determined by the resistivity of the semiconductor at the tunneling junction so SFCM is closely related to Scanning Spreading Resistance Microscopy (SSRM). Harmonics of the MFC are measured with high speed, and high accuracy because the signal-to-noise ratio is approximately 25 dB due to their extremely narrow (sub-Hz) linewidth. Now we superimpose a low-frequency signal (e.g. 10 Hz) on either the applied bias or the voltage that is applied to the piezoelectric actuators of the STM to cause sidebands at each harmonic of the MFC which are less affected by the artifacts. 
    more » « less
  3. Summary form only given, as follows. We have described a method to generate a microwave frequency comb (MFC) which has hundreds of measurable harmonics in the tunneling junction of a scanning tunneling microscope with a metal sample electrode. With semiconductor samples the harmonics have an attenuation that varies inversely with the local carrier density at the tunneling junction. Three methods for carrier profiling that are based on the MFC, and a fourth method where terahertz radiation is generated within the tunneling junction, are already implemented virtually in the prototype. Parallel and deterministic operation of two or more of these methods with simulations is made possible by basing this system on a field-programmable gate array (FPGA). Thus, different types of information about the semiconductor could be obtained in a fast and efficient manner with optimization and analysis in real time. The unique combination of simulations and measurement tools in a single instrument will facilitate maintenance and debugging as well as the optimization and characterization of each component and the full system. User-friendly LabVIEW software will be used with subpanel and tab control to access and combine the various functions. At present, in the development stage, each component that will later be attached to the FPGA is simulated but the physical parts may be switched in and out with the simulated components. 
    more » « less
  4. The first two harmonics of a microwave frequency comb (MFC) were measured at a probe which must be within 1 mm of the tunneling junction at the surface of a semiconductor as the sample electrode in a scanning tunneling microscope. The MFC was generated using a passively mode-locked Ti:Sapphire laser with GaN, but lasers with lower photon energy would be required with silicon. The attenuation of the MFC is primarily caused by the spreading resistance in a sub-nm spot at the tunneling junction. Thus, the measured attenuation could be used to determine the carrier density at this spot as an extension of scanning spreading resistance microscopy (SSRM). We anticipate that this effect will enable new nondestructive methods for sub-nm carrier profiling of semiconductors. 
    more » « less
  5. This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showed an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by∼<#comment/>3.4%<#comment/>and∼<#comment/>10%<#comment/>, respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications.

     
    more » « less