skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Breadth-First Search on a GPU Cluster
On a GPU cluster, the ratio of high computing power to communication bandwidth makes scaling breadth-first search (BFS) on a scale-free graph extremely challenging. By separating high and low out-degree vertices, we present an implementation with scalable computation and a model for scalable communication for BFS and direction-optimized BFS. Our communication model uses global reduction for high-degree vertices, and point-to-point transmission for low-degree vertices. Leveraging the characteristics of degree separation, we reduce the graph size to one third of the conventional edge list representation. With several other optimizations, we observe linear weak scaling as we increase the number of GPUs, and achieve 259.8 GTEPS on a scale-33 Graph500 RMAT graph with 124 GPUs on the latest CORAL early access system.Proceedings of the 31st IEEE International Parallel and Distributed Processing Symposium  more » « less
Award ID(s):
1740333 1629657
PAR ID:
10066971
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 31st IEEE International Parallel and Distributed Processing Symposium
Page Range / eLocation ID:
1090 to 1101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a novel method, GSM, to compute graph matching (subgraph isomorphism) on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based and thus can be mapped onto GPUs in a massively parallel fashion. Our implementation uses the Gunrock program- ming model and we evaluate our implementation in runtime and memory consumption compared with previous state-of-the- art work. We sustain a peak traversed-edges-per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is the most scalable and parallel among all existing GPU implementations and also outperforms all existing CPU distributed implementations. This work specifically focuses on leveraging our implementation on the triangle counting problem for the Subgraph Isomorphism Graph Challenge, demonstrating a geometric mean speedup over the 2018 champion of 3.84x 
    more » « less
  2. null (Ed.)
    We are motivated by newly proposed methods for data mining large-scale corpora of scholarly publications, such as the full biomedical literature, which may consist of tens of millions of papers spanning decades of research. In this setting, analysts seek to discover how concepts relate to one another. They construct graph representations from annotated text databases and then formulate the relationship-mining problem as one of computing all-pairs shortest paths (APSP), which becomes a significant bottleneck. In this context, we present a new high-performance algorithm and implementation of the Floyd-Warshall algorithm for distributed-memory parallel computers accelerated by GPUs, which we call DSNAPSHOT (Distributed Accelerated Semiring All-Pairs Shortest Path). For our largest experiments, we ran DSNAPSHOT on a connected input graph with millions of vertices using 4, 096nodes (24,576GPUs) of the Oak Ridge National Laboratory's Summit supercomputer system. We find DSNAPSHOT achieves a sustained performance of 136×1015 floating-point operations per second (136petaflop/s) at a parallel efficiency of 90% under weak scaling and, in absolute speed, 70% of the best possible performance given our computation (in the single-precision tropical semiring or “min-plus” algebra). Looking forward, we believe this novel capability will enable the mining of scholarly knowledge corpora when embedded and integrated into artificial intelligence-driven natural language processing workflows at scale. 
    more » « less
  3. Breadth-First Search (BFS) is a fundamental graph traversal algorithm in a level-by-level pattern. It has been widely used in real-world applications, such as social network analysis, scientific computing, and web crawling. However, achieving high performance for BFS on large-scale graphs remains a challenging task due to irregular memory access patterns, diverse graph structures, and the necessity for efficient parallelization. This paper addresses these challenges by designing a highly optimized parallel BFS implementation based on the top-down and bottom-up traversal strategies. It further integrates several key innovations, including graph typea-ware computation strategy selection, graph pruning, twolevel bottom-up, and efficient parallel implementation. We evaluate our method on 11 diverse graphs in terms of size, diameter, and density. On a CPU server with 48 threads, our method achieves an average speedup of 9.5x over the serial BFS implementation. Also, on a synthetic dense graph, our method processes 9.3 billion edges per second, showing its efficiency in dense graph traversal. 
    more » « less
  4. Finding from a big graph those subgraphs that satisfy certain conditions (aka. subgraph search) is useful in many applications such as community detection and subgraph matching. These problems often generate a search-space tree with size exponential to the size of the input graph. GPUs with thousands of cores are a natural choice to speed up subgraph search, but existing GPU solutions either conduct BFS on the search-space tree which leads to memory overflow due to intermediate subgraph-size explosion, or they conduct DFS on the search-space tree which is memory-efficient but can be 2 orders of magnitude slower than a BFS solution. In this paper, we present G2-AIMD, a subgraph-centric framework for efficient subGraph Search on GPUs, which enjoys the efficiency of BFS on the search-space tree, while avoids intermediate subgraph-size explosion with novel system designs such as adaptive chunk-size adjustment and host-memory subgraph buffering, inspired by the additive-increase/multiplicative-decrease (AIMD) algorithm in TCP congestion control. G2-AIMD provides a convenient subgraph-centric programming interface to facilitate the implementation of subgraph search algorithms on top, so as to enjoy the above performance merits. G2-AIMD also supports multi-GPU execution where each GPU only needs to load a fraction of the input graph. To demonstrate the efficiency and scalability of G2-AIMD, two algorithms were implemented on top with additional optimization techniques, and they significantly outperform the existing GPU solutions. 
    more » « less
  5. Counting and finding triangles in graphs is often used in real-world analytics to characterize cohesiveness and identify communities in graphs. In this paper, we propose the novel concept of a cover-edge set that can be used to find triangles more efficiently. We use a breadth-first search (BFS) to quickly generate a compact cover-edge set. Novel sequential and parallel triangle counting algorithms are presented that employ cover-edge sets. The sequential algorithm avoids unnecessary triangle-checking operations, and the parallel algorithm is communication-efficient. The parallel algorithm can asymptotically reduce communication on massive graphs such as from real social networks and synthetic graphs from the Graph500 Benchmark. In our estimate from massive-scale Graph500 graphs, our new parallel algorithm can reduce the communication on a scale 36 graph by 1156x and on a scale 42 graph by 2368x. 
    more » « less