skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems.  more » « less
Award ID(s):
1740551
PAR ID:
10066994
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
18
ISSN:
1533-7928
Page Range / eLocation ID:
1−54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    We study accelerated optimization methods in the Gaussian phase retrieval problem. In this setting, we prove that gradient methods with Polyak or Nesterov momentum have similar implicit regularization to gradient descent. This implicit regularization ensures that the algorithms remain in a nice region, where the cost function is strongly convex and smooth despite being nonconvex in general. This ensures that these accelerated methods achieve faster rates of convergence than gradient descent. Experimental evidence demonstrates that the accelerated methods converge faster than gradient descent in practice. 
    more » « less
  2. We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm (SVRG) and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective to solve high-dimensional optimization problems, while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions. 
    more » « less
  3. Many modern large-scale and distributed optimization problems can be cast into a form in which the objective function is a sum of a smooth term and a nonsmooth regularizer. Such problems can be solved via a proximal gradient method which generalizes standard gradient descent to a nonsmooth setup. In this paper, we leverage the tools from control theory to study global convergence of proximal gradient flow algorithms. We utilize the fact that the proximal gradient algorithm can be interpreted as a variable-metric gradient method on the forward-backward envelope. This continuously differentiable function can be obtained from the augmented Lagrangian associated with the original nonsmooth problem and it enjoys a number of favorable properties. We prove that global exponential convergence can be achieved even in the absence of strong convexity. Moreover, for in-network optimization problems, we provide a distributed implementation of the gradient flow dynamics based on the proximal augmented Lagrangian and prove global exponential stability for strongly convex problems. 
    more » « less
  4. Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice, the majority of existing theoretical analyses focus on simultaneous algorithms for convenience of analysis. In this paper, we study alternating gradient descent-ascent (Alt-GDA) in minimax games and show that Alt-GDA is superior to its simultaneous counterpart (Sim-GDA) in many settings. We prove that Alt-GDA achieves a near-optimal local convergence rate for strongly convex-strongly concave (SCSC) problems while Sim-GDA converges at a much slower rate. To our knowledge, this is the first result of any setting showing that Alt-GDA converges faster than Sim-GDA by more than a constant. We further adapt the theory of integral quadratic constraints (IQC) and show that Alt-GDA attains the same rate globally for a subclass of SCSC minimax problems. Empirically, we demonstrate that alternating updates speed up GAN training significantly and the use of optimism only helps for simultaneous algorithms. 
    more » « less
  5. Abstract Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived from the connection between acceleration mechanism andA-stability of ODE solvers, and the exponential decay of a tailored Lyapunov function along with the solution trajectory is proved. Numerical discretizations of NAG flow are then considered and convergence rates are established via a discrete Lyapunov function. The proposed differential equation solver approach can not only cover existing accelerated methods, such as FISTA, Güler’s proximal algorithm and Nesterov’s accelerated gradient method, but also produce new algorithms for composite convex optimization that possess accelerated convergence rates. Both the convex and the strongly convex cases are handled in a unified way in our approach. 
    more » « less