skip to main content


Title: Combining adaptivity with progression ordering for intelligent tutoring systems
Learning at scale (LAS) systems like Massive Open Online Classes (MOOCs) have hugely expanded access to high quality educational materials however, such materials are frequently time and resource expensive to create. In this work we propose a new approach for automatically and adaptively sequencing practice activities for a particular learner and explore its application for foreign language learning. We evaluate our system through simulation and are in the process of running an experiment. Our simulation results suggest that such an approach may be significantly better than an expert system when there is high variability in the rate of learning among the students and if mastering prerequisites before advancing is important. They also suggest it is likely to be no worse than an expert system if our generated curriculum approximately describes the necessary structure of learning in students.  more » « less
Award ID(s):
1657176
NSF-PAR ID:
10067110
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Work in Progress, Learning at Scale 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Problem-solving focuses on defining and analyzing problems, then finding viable solutions through an iterative process that requires brainstorming and understanding of what is known and what is unknown in the problem space. With rapid changes of economic landscape in the United States, new types of jobs emerge when new industries are created. Employers report that problem-solving is the most important skill they are looking for in job applicants. However, there are major concerns about the lack of problem-solving skills in engineering students. This lack of problem-solving skills calls for an approach to measure and enhance these skills. In this research, we propose to understand and improve problem-solving skills in engineering education by integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a manufacturing system in a VR game environment that we call a VR learning factory. The VR learning factory is built in the Unity game engine with the HTC Vive VR system for navigation and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing the system to identify the coordinates and objects that a user is looking at, at any given time during the simulation. In the environment, engineering students can see through the headset a virtual manufacturing environment composed of a series of workstations and are able to interact with workpieces in the virtual environment. For example, a student can pick up virtual plastic bricks and assemble them together using the wireless controller in hand. Second, engineering students are asked to design and assemble car toys that satisfy predefined customer requirements while minimizing the total cost of production. Third, data-driven models are developed to analyze eye-movement patterns of engineering students. For instance, problem-solving skills are measured by the extent to which the eye-movement patterns of engineering students are similar to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for the car toy assembly process. Benchmark experiments are conducted with a comprehensive measure of performance metrics such as cycle time, the number of station switches, weight, price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient and effective to measure problem-solving skills of engineering students. The proposed VR learning factory was integrated into undergraduate manufacturing courses to enhance student learning and problem-solving skills. 
    more » « less
  2. The emphasis on conceptual learning and the development of adaptive instructional design are both emerging areas in science and engineering education. Instructors are writing their own conceptual questions to promote active learning during class and utilizing pools of these questions in assessments. For adaptive assessment strategies, these questions need to be rated based on difficulty level (DL). Historically DL has been determined from the performance of a suitable number of students. The research study reported here investigates whether instructors can save time by predicting DL of newly made conceptual questions without the need for student data. In this paper, we report on the development of one component in an adaptive learning module for materials science – specifically on the topic of crystallography. The summative assessment element consists of five DL scales and 15 conceptual questions This adaptive assessment directs students based on their previous performances and the DL of the questions. Our five expert participants are faculty members who have taught the introductory Materials Science course multiple times. They provided predictions for how many students would answer each question correctly during a two-step process. First, predictions were made individually without an answer key. Second, experts had the opportunity to revise their predictions after being provided an answer key in a group discussion. We compared expert predictions with actual student performance using results from over 400 students spanning multiple courses and terms. We found no clear correlation between expert predictions of the DL and the measured DL from students. Some evidence shows that discussion during the second step made expert predictions closer to student performance. We suggest that, in determining the DL for conceptual questions, using predictions of the DL by experts who have taught the course is not a valid route. The findings in this paper can be applied to assessments in both in-person, hybrid, and online settings and is applicable to subject matter beyond materials science. 
    more » « less
  3. Abstract: 100 words Jurors are increasingly exposed to scientific information in the courtroom. To determine whether providing jurors with gist information would assist in their ability to make well-informed decisions, the present experiment utilized a Fuzzy Trace Theory-inspired intervention and tested it against traditional legal safeguards (i.e., judge instructions) by varying the scientific quality of the evidence. The results indicate that jurors who viewed high quality evidence rated the scientific evidence significantly higher than those who viewed low quality evidence, but were unable to moderate the credibility of the expert witness and apply damages appropriately resulting in poor calibration. Summary: <1000 words Jurors and juries are increasingly exposed to scientific information in the courtroom and it remains unclear when they will base their decisions on a reasonable understanding of the relevant scientific information. Without such knowledge, the ability of jurors and juries to make well-informed decisions may be at risk, increasing chances of unjust outcomes (e.g., false convictions in criminal cases). Therefore, there is a critical need to understand conditions that affect jurors’ and juries’ sensitivity to the qualities of scientific information and to identify safeguards that can assist with scientific calibration in the courtroom. The current project addresses these issues with an ecologically valid experimental paradigm, making it possible to assess causal effects of evidence quality and safeguards as well as the role of a host of individual difference variables that may affect perceptions of testimony by scientific experts as well as liability in a civil case. Our main goal was to develop a simple, theoretically grounded tool to enable triers of fact (individual jurors) with a range of scientific reasoning abilities to appropriately weigh scientific evidence in court. We did so by testing a Fuzzy Trace Theory-inspired intervention in court, and testing it against traditional legal safeguards. Appropriate use of scientific evidence reflects good calibration – which we define as being influenced more by strong scientific information than by weak scientific information. Inappropriate use reflects poor calibration – defined as relative insensitivity to the strength of scientific information. Fuzzy Trace Theory (Reyna & Brainerd, 1995) predicts that techniques for improving calibration can come from presentation of easy-to-interpret, bottom-line “gist” of the information. Our central hypothesis was that laypeople’s appropriate use of scientific information would be moderated both by external situational conditions (e.g., quality of the scientific information itself, a decision aid designed to convey clearly the “gist” of the information) and individual differences among people (e.g., scientific reasoning skills, cognitive reflection tendencies, numeracy, need for cognition, attitudes toward and trust in science). Identifying factors that promote jurors’ appropriate understanding of and reliance on scientific information will contribute to general theories of reasoning based on scientific evidence, while also providing an evidence-based framework for improving the courts’ use of scientific information. All hypotheses were preregistered on the Open Science Framework. Method Participants completed six questionnaires (counterbalanced): Need for Cognition Scale (NCS; 18 items), Cognitive Reflection Test (CRT; 7 items), Abbreviated Numeracy Scale (ABS; 6 items), Scientific Reasoning Scale (SRS; 11 items), Trust in Science (TIS; 29 items), and Attitudes towards Science (ATS; 7 items). Participants then viewed a video depicting a civil trial in which the defendant sought damages from the plaintiff for injuries caused by a fall. The defendant (bar patron) alleged that the plaintiff (bartender) pushed him, causing him to fall and hit his head on the hard floor. Participants were informed at the outset that the defendant was liable; therefore, their task was to determine if the plaintiff should be compensated. Participants were randomly assigned to 1 of 6 experimental conditions: 2 (quality of scientific evidence: high vs. low) x 3 (safeguard to improve calibration: gist information, no-gist information [control], jury instructions). An expert witness (neuroscientist) hired by the court testified regarding the scientific strength of fMRI data (high [90 to 10 signal-to-noise ratio] vs. low [50 to 50 signal-to-noise ratio]) and gist or no-gist information both verbally (i.e., fairly high/about average) and visually (i.e., a graph). After viewing the video, participants were asked if they would like to award damages. If they indicated yes, they were asked to enter a dollar amount. Participants then completed the Positive and Negative Affect Schedule-Modified Short Form (PANAS-MSF; 16 items), expert Witness Credibility Scale (WCS; 20 items), Witness Credibility and Influence on damages for each witness, manipulation check questions, Understanding Scientific Testimony (UST; 10 items), and 3 additional measures were collected, but are beyond the scope of the current investigation. Finally, participants completed demographic questions, including questions about their scientific background and experience. The study was completed via Qualtrics, with participation from students (online vs. in-lab), MTurkers, and non-student community members. After removing those who failed attention check questions, 469 participants remained (243 men, 224 women, 2 did not specify gender) from a variety of racial and ethnic backgrounds (70.2% White, non-Hispanic). Results and Discussion There were three primary outcomes: quality of the scientific evidence, expert credibility (WCS), and damages. During initial analyses, each dependent variable was submitted to a separate 3 Gist Safeguard (safeguard, no safeguard, judge instructions) x 2 Scientific Quality (high, low) Analysis of Variance (ANOVA). Consistent with hypotheses, there was a significant main effect of scientific quality on strength of evidence, F(1, 463)=5.099, p=.024; participants who viewed the high quality evidence rated the scientific evidence significantly higher (M= 7.44) than those who viewed the low quality evidence (M=7.06). There were no significant main effects or interactions for witness credibility, indicating that the expert that provided scientific testimony was seen as equally credible regardless of scientific quality or gist safeguard. Finally, for damages, consistent with hypotheses, there was a marginally significant interaction between Gist Safeguard and Scientific Quality, F(2, 273)=2.916, p=.056. However, post hoc t-tests revealed significantly higher damages were awarded for low (M=11.50) versus high (M=10.51) scientific quality evidence F(1, 273)=3.955, p=.048 in the no gist with judge instructions safeguard condition, which was contrary to hypotheses. The data suggest that the judge instructions alone are reversing the pattern, though nonsignificant, those who received the no gist without judge instructions safeguard awarded higher damages in the high (M=11.34) versus low (M=10.84) scientific quality evidence conditions F(1, 273)=1.059, p=.30. Together, these provide promising initial results indicating that participants were able to effectively differentiate between high and low scientific quality of evidence, though inappropriately utilized the scientific evidence through their inability to discern expert credibility and apply damages, resulting in poor calibration. These results will provide the basis for more sophisticated analyses including higher order interactions with individual differences (e.g., need for cognition) as well as tests of mediation using path analyses. [References omitted but available by request] Learning Objective: Participants will be able to determine whether providing jurors with gist information would assist in their ability to award damages in a civil trial. 
    more » « less
  4. null (Ed.)
    In recent years, Reinforcement learning (RL), especially Deep RL (DRL), has shown outstanding performance in video games from Atari, Mario, to StarCraft. However, little evidence has shown that DRL can be successfully applied to real-life human-centric tasks such as education or healthcare. Different from classic game-playing where the RL goal is to make an agent smart, in human-centric tasks the ultimate RL goal is to make the human-agent interactions productive and fruitful. Additionally, in many real-life human-centric tasks, data can be noisy and limited. As a sub-field of RL, batch RL is designed for handling situations where data is limited yet noisy, and building simulations is challenging. In two consecutive classroom studies, we investigated applying batch DRL to the task of pedagogical policy induction for an Intelligent Tutoring System (ITS), and empirically evaluated the effectiveness of induced pedagogical policies. In Fall 2018 (F18), the DRL policy is compared against an expert-designed baseline policy and in Spring 2019 (S19), we examined the impact of explaining the batch DRL-induced policy with student decisions and the expert baseline policy. Our results showed that 1) while no significant difference was found between the batch RL-induced policy and the expert policy in F18, the batch RL-induced policy with simple explanations significantly improved students’ learning performance more than the expert policy alone in S19; and 2) no significant differences were found between the student decision making and the expert policy. Overall, our results suggest that pairing simple explanations with induced RL policies can be an important and effective technique for applying RL to real-life human-centric tasks. 
    more » « less
  5. null (Ed.)
    This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings. 
    more » « less