skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pseudo-developing maps for ideal triangulations II: Positively oriented ideal triangulations of cone-manifolds
Award ID(s):
1405106
PAR ID:
10067123
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
145
Issue:
8
ISSN:
0002-9939
Page Range / eLocation ID:
3543 to 3560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin.2/- equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology. 
    more » « less
  2. null (Ed.)
    For integers $$n\ge 0$$, an iterated triangulation $$\mathrm{Tr}(n)$$ is defined recursively as follows: $$\mathrm{Tr}(0)$$ is the plane triangulation on three vertices and, for $$n\ge 1$$, $$\mathrm{Tr}(n)$$ is the plane triangulation obtained from the plane triangulation $$\mathrm{Tr}(n-1)$$ by, for each inner face $$F$$ of $$\mathrm{Tr}(n-1)$$, adding inside $$F$$ a new vertex and three edges joining this new vertex to the three vertices incident with $$F$$. In this paper, we show that there exists a 2-edge-coloring of $$\mathrm{Tr}(n)$$ such that $$\mathrm{Tr}(n)$$ contains no monochromatic copy of the cycle $$C_k$$ for any $$k\ge 5$$. As a consequence, the answer to one of two questions asked by Axenovich et al. is negative. We also determine the radius 2 graphs $$H$$ for which there exists $$n$$ such that every 2-edge-coloring of $$\mathrm{Tr}(n)$$ contains a monochromatic copy of $$H$$, extending a result of Axenovich et al. for radius 2 trees. 
    more » « less
  3. We show that any polygon P has an acute triangulation where every angle lies in the interval I=[30, 75] (degrees), except for triangles T that contain a vertex v of P where P has an interior angle theta_v < 30; then T is an isosceles triangle with angles \theta_v and 90 -\theta_v/2. 
    more » « less