skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian planning of step‐stress accelerated degradation tests under various optimality criteria
Abstract Step‐stress accelerated degradation testing (SSADT) has become a common approach to predicting lifetime for highly reliable products that are unlikely to fail in a reasonable time under use conditions or even elevated stress conditions. In literature, the planning of SSADT has been widely investigated for stochastic degradation processes, such as Wiener processes and gamma processes. In this paper, we model the optimal SSADT planning problem from a Bayesian perspective and optimize test plans by determining both stress levels and the allocation of inspections. Large‐sample approximation is used to derive the asymptotic Bayesian utility functions under 3 planning criteria. A revisited LED lamp example is presented to illustrate our method. The comparison with optimal plans from previous studies demonstrates the necessity of considering the stress levels and inspection allocations simultaneously.  more » « less
Award ID(s):
1726445
PAR ID:
10067263
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied Stochastic Models in Business and Industry
Volume:
35
Issue:
3
ISSN:
1524-1904
Page Range / eLocation ID:
p. 537-551
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms. 
    more » « less
  2. Summary A Bayesian framework for group testing under dilution effects has been developed, using lattice-based models. This work has particular relevance given the pressing public health need to enhance testing capacity for coronavirus disease 2019 and future pandemics, and the need for wide-scale and repeated testing for surveillance under constantly varying conditions. The proposed Bayesian approach allows for dilution effects in group testing and for general test response distributions beyond just binary outcomes. It is shown that even under strong dilution effects, an intuitive group testing selection rule that relies on the model order structure, referred to as the Bayesian halving algorithm, has attractive optimal convergence properties. Analogous look-ahead rules that can reduce the number of stages in classification by selecting several pooled tests at a time are proposed and evaluated as well. Group testing is demonstrated to provide great savings over individual testing in the number of tests needed, even for moderately high prevalence levels. However, there is a trade-off with higher number of testing stages, and increased variability. A web-based calculator is introduced to assist in weighing these factors and to guide decisions on when and how to pool under various conditions. High-performance distributed computing methods have also been implemented for considering larger pool sizes, when savings from group testing can be even more dramatic. 
    more » « less
  3. Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method. 
    more » « less
  4. In recent years, accelerated destructive degradation testing (ADDT) has been applied to obtain the reliability information of an asset (component) at use conditions when the component is highly reliable. In ADDT, degradation data are measured under stress levels more severe than usual so that more component failures can be observed in a short period. In the literature, most application-specific ADDT models assume a parametric degradation process under different accelerating conditions. Models without strong parametric assumptions are desirable to describe the complex ADDT processes. This paper proposes a general ADDT model that consists of a nonparametric part to describe the degradation path and a parametric part to describe the accelerating-variable effect. The proposed model not only provides more model flexibility with few assumptions, but also retains the physical mechanisms of degradation. Due to the complexity of parameter estimation, an efficient method based on self-adaptive differential evolution is developed to estimate model parameters. A simulation study is implemented to verify the developed methods. Two real-world case studies are conducted, and the results show the superior performance of the developed model compared with the existing methods. 
    more » « less
  5. Abstract Climate change threatens the resource adequacy of future power systems. Existing research and practice lack frameworks for identifying decarbonization pathways that are robust to climate‐related uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our framework integrates power system planning and resource adequacy models with 100 climate realizations from a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind, solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to significant resource adequacy failures under climate realizations in 2040, but certain pathways experience significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying and planning for an extreme climate realization that drives the largest resource adequacy failures across our pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest increases in investment costs can add significant robustness against climate change in decarbonizing power systems. Our framework can help power system planners adapt to climate change by stress testing future plans to potential climate realizations, and offers a unique bridge between energy system and climate modeling. 
    more » « less