skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a Mentorship Program in Engineering and Engineering Technology
This paper discusses feasible means of integrating mentorship programs into engineering and engineering technology curricula. The two main motivations for investigating the development of such programs are to improve retention rates and to augment the efforts toward increasing the enrollment of minority students. In fact, it can be argued that a mentorship program can also indirectly assist in the achievement of critical student outcomes for accreditation. The model of mentorship presented in this paper involves a vertical integration of cohorts through a series of project-based learning (PBL) courses. Furthermore, this attempt is enhanced by the introduction of incentives that encourage student involvement in undergraduate research as well as on-campus engineering organizations. The specific focus of the mentorship is on student-student relationships in addition to the conventional faculty-student relationships. These relationships allow students to learn from each other since they are able to strongly relate to each other’s experiences among their peer group. The mentoring model proposed in this paper formulates a learning community that allows the student to form a support group and a mechanism for preventive intervention, as discussed in other studies on mentoring programs. Such student engagement is commonly acknowledged to significantly benefit the students as well as the student mentors involved in the program. Data from an initial student survey that measures the efficacy of the proposed mentorship program is included in this paper and these data are discussed in detail. A 1-5 Likert scale is used for quantitative analysis of the data in order to evaluate the self-efficacy of the program. The group size of the mentorship cohort has been limited to a maximum of thirty students at this stage. Preliminary analysis of the data indicates that the participating students have a strongly positive opinion of the program.  more » « less
Award ID(s):
1355872
PAR ID:
10067327
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference and Exposition -
Page Range / eLocation ID:
26.523.1 to 26.523.12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Alternative Pathways to Excellence (APEX) Program at the University of St. Thomas, funded by NSF as an S-STEM Track 2 project, aims to solidify transfer pathways, and assist Engineering students by providing financial, academic, and practical support. The successful integration of transfer students into engineering programs presents a unique set of challenges and opportunities for higher education institutions. The APEX program offers a spectrum of student support services, both structured and informal mentoring, curricular and co-curricular supports, and collaborative activities. The program is designed to forge accessible pathways into engineering careers for students with high academic potential, who are facing financial constraints by granting annual S-STEM scholarships to a select group of students. This paper describes a layered mentoring approach adopted by our team that encompasses both pre-application and post-application phases. We explore the pivotal roles played by peers, faculty members, and industry advisors in mentoring aspiring engineers through their educational journey. The paper describes the support structures and strategies implemented before students apply to engineering programs, shedding light on how early mentoring can influence students' preparedness and motivation to pursue engineering degrees. This paper also reports on the ongoing mentoring and support mechanisms vital for transfer students during their engineering studies. Peer mentoring, faculty mentoring, and industry advisor mentorship are all integral components of this stage. Furthermore, the paper discusses the training routines and strategies employed to prepare faculty, industry advisors, and peer mentors for their roles in supporting engineering students. This training ensures that mentors are equipped with the necessary skills and knowledge to guide students effectively, foster their academic growth, and nurture their professional aspirations. 
    more » « less
  2. This Complete Evidence-Based Paper presents research about a layered peer mentorship program for undergraduate engineering students at a public urban research university and ways that students have made meaning from their mentorship experiences. This mentorship program began in Fall 2019 and has grown to include the following layers: (a) first-year students who receive mentorship, (b) sophomore- and junior-level students who serve as mentors (all of whom received mentorship during their first year), (c) junior- and senior-level students who serve as lead mentors who design the program for that academic year (including content, group meetings, service projects, meeting schedules, etc.), (d) a graduate student who mentors and supervises the lead mentors, and (e) a faculty member who oversees the overall program, provides general guidance, and advises all the students. We will describe ways in which the participating students have made meaning of their experience in the program, highlighting three key areas: (1) the web of relationships formed, which cohere into a community; (2) students’ transitions from receiving mentorship as first-year students to mentoring others in their sophomore and junior years; and (3) the feedback and iteration process by which the program has continuously developed, which forefronts student voice and agency. The paper will provide specific examples in each of the three key areas described, with a special focus on students’ own descriptions of the meaning they have made through their participation in the mentorship program. Recommendations will also be shared for those interested in implementing similar programs on their campuses. 
    more » « less
  3. null (Ed.)
    There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation. 
    more » « less
  4. A group of interdisciplinary faculty at Hostos Community College, an institution that serves a largely first-generation student population that is over 90% minority, 69% women, who often live below the poverty line and lack academic role models, has created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program designed to increase the number of low-income academically talented students who persevere and graduate with associate and baccalaureate degrees in engineering. HEAT provides its scholars with financial support, a combined mentoring model where scholars work with STEM faculty and more advanced engineering students throughout the year, and the opportunity to participate in mentored research experiences. Student successes include improved GPAs, rates of retention, graduation from 2- and 4-year institutions, and acceptance to STEM graduate programs or entering the workforce as compared to students not participating in HEAT. Surveys of Scholars indicate that combined mentorship is the most important component of HEAT. Thus, HEAT is a model of intervention that serves to expand the STEM pipeline to create a more inclusive and diverse engineering workforce. 
    more » « less
  5. The purpose of this study was to examine the influence of multi-layered mentoring in summer engineering programs on confidence in understanding engineering research, engineering disciplines and the ability to conduct engineering research. This paper describes the work in progress towards incorporating this approach into summer programs at Rutgers University. The participants in the study included high school students from over 6 different high schools in New Jersey, coupled with in-service teachers who were participants in a National Science Foundation RET Site: Rutgers University Research Experience for Teachers in Engineering for Green Energy Technology and undergraduate scholars who participated in the REU Site: Green Energy Technology Undergraduate Program. The perceptions, understanding and evaluation of the program before the implementation of the multi-layered mentorship program are compared to the multi-layered program. High school students expressed higher confidence levels in the engineering design cycle and knowledge of the engineering discipline in the multi-layered mentorship program. Undergraduate students who were in labs where they peer-mentored teachers expressed higher levels of confidence in their skills as researchers than undergraduate students who did not peer-mentor in-service teachers or high school students. Future work will include enhanced data sampling, a revision of interview questions and assessment of participant’s understanding of concepts via quizzes. 
    more » « less