The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1‐BR2‐2‐[(Me2N)2C=N]‐C6H4(
Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)
- PAR ID:
- 10067338
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – An Asian Journal
- Volume:
- 13
- Issue:
- 18
- ISSN:
- 1861-4728
- Page Range / eLocation ID:
- p. 2632-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 3 –6 ) [BR2=BMes2(3 ), BC12H8, (4 ), BBN (5 ), BBNO (6 )] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X‐ray analysis. These novel types of pre‐organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via anortho ‐phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds.4 and5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1‐(RC≡C‐BR2)‐2‐[(Me2N)2C=NH]‐C6H4(R=Ph, H) and reacted with ammonia, BnNH2and pyrrolidine, to generate the FLP adducts 1‐(R2HN→BR2)‐2‐[(Me2N)2C=NH]‐C6H4, where the N‐H functionality is activated by intramolecular H‐bond interactions. In addition,5 was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise,5 is capable of cleaving H2, HBPin and PhSiH3to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules. -
Two routes to the title compounds are evaluated. First, a ca. 0.01 M CH 2 Cl 2 solution of H 3 B·P((CH 2 ) 6 CH=CH 2 ) 3 ( 1 ·BH 3 ) is treated with 5 mol % of Grubbs' first generation catalyst (0 °C to reflux), followed by H 2 (5 bar) and Wilkinson's catalyst (55 °C). Column chromatography affords H 3 B·P( n- C 8 H 17 ) 3 (1%), H 3 B· P ((CH 2 ) 13 C H 2 )( n -C 8 H 17 ) (8%; see text for tie bars that indicate additional phosphorus–carbon linkages, which are coded in the abstract with italics), H 3 B· P ((CH 2 ) 13 C H 2 )((CH 2 ) 14 ) P ((CH 2 ) 13 C H 2 )·BH 3 ( 6 ·2BH 3 , 10%), in,out -H 3 B·P((CH 2 ) 14 ) 3 P·BH 3 ( in,out - 2 ·2BH 3 , 4%) and the stereoisomer ( in,in / out,out )- 2 ·2BH 3 (2%). Four of these structures are verified by independent syntheses. Second, 1,14-tetradecanedioic acid is converted (reduction, bromination, Arbuzov reaction, LiAlH 4 ) to H 2 P((CH 2 ) 14 )PH 2 ( 10 ; 76% overall yield). The reaction with H 3 B·SMe 2 gives 10 ·2BH 3 , which is treated with n -BuLi (4.4 equiv) and Br(CH 2 ) 6 CH=CH 2 (4.0 equiv) to afford the tetraalkenyl precursor (H 2 C=CH(CH 2 ) 6 ) 2 (H 3 B)P((CH 2 ) 14 )P(BH 3 )((CH 2 ) 6 CH=CH 2 ) 2 ( 11 ·2BH 3 ; 18%). Alternative approaches to 11 ·2BH 3 (e.g., via 11 ) were unsuccessful. An analogous metathesis/hydrogenation/chromatography sequence with 11 ·2BH 3 (0.0010 M in CH 2 Cl 2 ) gives 6 ·2BH 3 (5%), in,out - 2 ·2BH 3 (6%), and ( in,in / out,out )- 2 ·2BH 3 (7%). Despite the doubled yield of 2 ·2BH 3 , the longer synthesis of 11 ·2BH 3 vs 1 ·BH 3 renders the two routes a toss-up; neither compares favorably with precious metal templated syntheses.more » « less
-
ABSTRACT This work investigates effects of poly(
γ ‐butyrolactone) (Pγ BL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withM nranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear Pγ BL behaving much like cyclic Pγ BL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018 ,56 , 2271–2279 -
Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=
a , Me;b , Et;c ,n ‐Bu;d ,n ‐Dec;e , Bn;f ,p ‐tolCH2) are combined with (p ‐tol3P)2PtCl2ortrans ‐(p‐ tol3P)2Pt((C≡C)2H)2to give the chelatescis ‐(R2C(CH2PPh2)2)PtCl2(2 a –f , 94–69 %) orcis ‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a –f , 97–54 %). Complexes3 a –d are also available from2 a –d and excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2 and3 react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a –f ; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a ,b show skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a –f are similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally. -
Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (
1 , M=Co,2 : M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1 and2 in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1 and2 are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [J iso(VIV−VIV)=−5.4(1 ); −3.9(2 ) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [J iso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1 .