skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Non-metal-templated approaches to bis(borane) derivatives of macrocyclic dibridgehead diphosphines via alkene metathesis
Two routes to the title compounds are evaluated. First, a ca. 0.01 M CH 2 Cl 2 solution of H 3 B·P((CH 2 ) 6 CH=CH 2 ) 3 ( 1 ·BH 3 ) is treated with 5 mol % of Grubbs' first generation catalyst (0 °C to reflux), followed by H 2 (5 bar) and Wilkinson's catalyst (55 °C). Column chromatography affords H 3 B·P( n- C 8 H 17 ) 3 (1%), H 3 B· P ((CH 2 ) 13 C H 2 )( n -C 8 H 17 ) (8%; see text for tie bars that indicate additional phosphorus–carbon linkages, which are coded in the abstract with italics), H 3 B· P ((CH 2 ) 13 C H 2 )((CH 2 ) 14 ) P ((CH 2 ) 13 C H 2 )·BH 3 ( 6 ·2BH 3 , 10%), in,out -H 3 B·P((CH 2 ) 14 ) 3 P·BH 3 ( in,out - 2 ·2BH 3 , 4%) and the stereoisomer ( in,in / out,out )- 2 ·2BH 3 (2%). Four of these structures are verified by independent syntheses. Second, 1,14-tetradecanedioic acid is converted (reduction, bromination, Arbuzov reaction, LiAlH 4 ) to H 2 P((CH 2 ) 14 )PH 2 ( 10 ; 76% overall yield). The reaction with H 3 B·SMe 2 gives 10 ·2BH 3 , which is treated with n -BuLi (4.4 equiv) and Br(CH 2 ) 6 CH=CH 2 (4.0 equiv) to afford the tetraalkenyl precursor (H 2 C=CH(CH 2 ) 6 ) 2 (H 3 B)P((CH 2 ) 14 )P(BH 3 )((CH 2 ) 6 CH=CH 2 ) 2 ( 11 ·2BH 3 ; 18%). Alternative approaches to 11 ·2BH 3 (e.g., via 11 ) were unsuccessful. An analogous metathesis/hydrogenation/chromatography sequence with 11 ·2BH 3 (0.0010 M in CH 2 Cl 2 ) gives 6 ·2BH 3 (5%), in,out - 2 ·2BH 3 (6%), and ( in,in / out,out )- 2 ·2BH 3 (7%). Despite the doubled yield of 2 ·2BH 3 , the longer synthesis of 11 ·2BH 3 vs 1 ·BH 3 renders the two routes a toss-up; neither compares favorably with precious metal templated syntheses.  more » « less
Award ID(s):
1566601 1153085
NSF-PAR ID:
10163023
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Beilstein Journal of Organic Chemistry
Volume:
14
ISSN:
1860-5397
Page Range / eLocation ID:
2354 to 2365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less
  2. Abstract

    Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 ac; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out4 ca′and a conformer ofin,out4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared.

     
    more » « less
  3. The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures. 
    more » « less
  4. Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60 %). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed. 
    more » « less
  5. The syntheses of [2-(CH 3 ECH 2 )C 6 H 4 ]PbPh 3− n Cl n , ( n = 0, E = O (4), E = S (5); n = 1, E = O (6), E = S (7); n = 2, E = O (8), are described. NMR and single crystal data illustrate significant Pb⋯E interactions increasing as n progresses from 0 to 2. The Pb⋯E interactions stabilize the Pb–aryl bonding to the extent that the reactions of 4 and 5 with Me 2 SnCl 2 result in interchange of a Ph group and Cl to produce 6 and 7, respectively, together with Me 2 PhSnCl. 
    more » « less