skip to main content


Title: A Game Theoretic Approach to Model Cyber Attack and Defense Strategies
Most of the cybersecurity research focus on either presenting a specific vulnerability %or hacking technique, or proposing a specific defense algorithm to defend against a well-defined attack scheme. Although such cybersecurity research is important, few have paid attention to the dynamic interactions between attackers and defenders, where both sides are intelligent and will dynamically change their attack or defense strategies in order to gain the upper hand over their opponents. This 'cyberwar' phenomenon exists among most cybersecurity incidents in the real world, which warrants special research and analysis. In this paper, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between the attacker and the defender as a non-cooperative security game. The key idea is to model attackers/defenders to have multiple levels of attack/defense strategies that are different in terms of effectiveness, strategy costs, and attack gains/damages. Each player adjusts his strategy based on the strategy's cost, potential attack gain/damage, and effectiveness in anticipating of the opponent's strategy. We study the achievable Nash equilibrium for the attacker-defender security game where the players employ an efficient strategy according to the obtained equilibrium. Furthermore, we present case studies of three different types of network attacks and put forth how our hyper defense system can successfully model them. Simulation results show that the proposed game theoretical system achieves a better performance compared to two other fixed-strategy defense systems.  more » « less
Award ID(s):
1802701 1723587
NSF-PAR ID:
10067360
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Communications
ISSN:
1938-1883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  2. With the increasing penetration of cyber systems in the power grid, it is becoming increasingly imperative to deploy adequate security measures all across the grid to secure it against any kind of cyber threat. Since financial resources for investment in security are limited, optimal allocation of these cybersecurity resources in the grid is extremely important. At the same time, optimization of these investments proves to be challenging due to the uncertain behavior of attackers and the dynamically changing threat landscape. Existing solutions for this problem either do not address the dynamic behavior of adversaries or lack in the practical feasibility of the defense models. This paper addresses the problem of optimizing investment strategies in the cybersecurity infrastructure of a smart grid using a game-theoretic approach. The attacker is modeled using various attacker profiles which represent the possible types of adversaries in the context of CPS. Each profile has certain characteristics to bring out the aspect of uncertain behavior of the adversaries. The defender is modeled with various pragmatic characteristics that can be easily translated to the real-world grid scenarios for implementation. These characteristics include the standards laid down by the North American Electric Reliability Corporation (NERC) for Critical Infrastructure Protection (CIP) commonly known as the NERC-CIP standards. The game-theoretic framework allows us to obtain optimal strategies that the defender of the grid can adopt to minimize its losses against the possible attack threats on the grid. The concept is illustrated by a simplistic 3-bus power system model case study which depicts how the solution can be translated to practical implementation in the actual grid. 
    more » « less
  3. We propose a methodology, called defender–attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game‐theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared‐guided MANPADS (man‐portable air defense systems), laser‐guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure.

     
    more » « less
  4. The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behavior of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing an optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation. 
    more » « less
  5. Although security games have attracted intensive research attention over the past years, few existing works consider how information from local communities would affect the game. In this paper, we introduce a new player -- a strategic informant, who can observe and report upcoming attacks -- to the defender-attacker security game setting. Characterized by a private type, the informant has his utility structure that leads to his strategic behaviors. We model the game as a 3-player extensive-form game and propose a novel solution concept of Strong Stackelberg-perfect Bayesian equilibrium. To compute the optimal defender strategy, we first show that although the informant can have infinitely many types in general, the optimal defense plan can only include a finite (exponential) number of different patrol strategies. We then prove that there exists a defense plan with only a linear number of patrol strategies that achieve the optimal defender's utility, which significantly reduces the computational burden and allows us to solve the game in polynomial time using linear programming. Finally, we conduct extensive experiments to show the effect of the strategic informant and demonstrate the effectiveness of our algorithm.

     
    more » « less