skip to main content

Title: A Game Theoretic Approach to Model Cyber Attack and Defense Strategies
Most of the cybersecurity research focus on either presenting a specific vulnerability %or hacking technique, or proposing a specific defense algorithm to defend against a well-defined attack scheme. Although such cybersecurity research is important, few have paid attention to the dynamic interactions between attackers and defenders, where both sides are intelligent and will dynamically change their attack or defense strategies in order to gain the upper hand over their opponents. This 'cyberwar' phenomenon exists among most cybersecurity incidents in the real world, which warrants special research and analysis. In this paper, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between the attacker and the defender as a non-cooperative security game. The key idea is to model attackers/defenders to have multiple levels of attack/defense strategies that are different in terms of effectiveness, strategy costs, and attack gains/damages. Each player adjusts his strategy based on the strategy's cost, potential attack gain/damage, and effectiveness in anticipating of the opponent's strategy. We study the achievable Nash equilibrium for the attacker-defender security game where the players employ an efficient strategy according to the obtained equilibrium. Furthermore, we present case studies of three different types of network attacks and put more » forth how our hyper defense system can successfully model them. Simulation results show that the proposed game theoretical system achieves a better performance compared to two other fixed-strategy defense systems. « less
Authors:
; ;
Award ID(s):
1802701 1723587
Publication Date:
NSF-PAR ID:
10067360
Journal Name:
IEEE International Conference on Communications
ISSN:
1938-1883
Sponsoring Org:
National Science Foundation
More Like this
  1. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodologymore »for real-world implementation.« less
  2. With the increasing penetration of cyber systems in the power grid, it is becoming increasingly imperative to deploy adequate security measures all across the grid to secure it against any kind of cyber threat. Since financial resources for investment in security are limited, optimal allocation of these cybersecurity resources in the grid is extremely important. At the same time, optimization of these investments proves to be challenging due to the uncertain behavior of attackers and the dynamically changing threat landscape. Existing solutions for this problem either do not address the dynamic behavior of adversaries or lack in the practical feasibility of the defense models. This paper addresses the problem of optimizing investment strategies in the cybersecurity infrastructure of a smart grid using a game-theoretic approach. The attacker is modeled using various attacker profiles which represent the possible types of adversaries in the context of CPS. Each profile has certain characteristics to bring out the aspect of uncertain behavior of the adversaries. The defender is modeled with various pragmatic characteristics that can be easily translated to the real-world grid scenarios for implementation. These characteristics include the standards laid down by the North American Electric Reliability Corporation (NERC) for Critical Infrastructure Protectionmore »(CIP) commonly known as the NERC-CIP standards. The game-theoretic framework allows us to obtain optimal strategies that the defender of the grid can adopt to minimize its losses against the possible attack threats on the grid. The concept is illustrated by a simplistic 3-bus power system model case study which depicts how the solution can be translated to practical implementation in the actual grid.« less
  3. Although security games have attracted intensive research attention over the past years, few existing works consider how information from local communities would affect the game. In this paper, we introduce a new player -- a strategic informant, who can observe and report upcoming attacks -- to the defender-attacker security game setting. Characterized by a private type, the informant has his utility structure that leads to his strategic behaviors. We model the game as a 3-player extensive-form game and propose a novel solution concept of Strong Stackelberg-perfect Bayesian equilibrium. To compute the optimal defender strategy, we first show that although the informant can have infinitely many types in general, the optimal defense plan can only include a finite (exponential) number of different patrol strategies. We then prove that there exists a defense plan with only a linear number of patrol strategies that achieve the optimal defender's utility, which significantly reduces the computational burden and allows us to solve the game in polynomial time using linear programming. Finally, we conduct extensive experiments to show the effect of the strategic informant and demonstrate the effectiveness of our algorithm.

  4. The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behavior of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing anmore »optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation.« less
  5. Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender andmore »the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.« less