skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: a study on hydrogen bonding in polymorphs of palmitic acid
The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13 C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer ( R 22(8)) hydrogen bonding arrangement. Phases A 2 , B m and E m have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated A s is a mix of five forms, including 27.4% of B m and four novel phases not fully characterized here due to insufficient sample mass. For phases A 2 , B m , E m , and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1 σ level based upon agreement of DFT computed 13 COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters ( i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes of NMR-derived anisotropic displacement ellipsoids for phases with localized OH hydrogens are 4.1 times smaller than those derived from single crystal X-ray diffraction and 1.8 times smaller than the volume of benchmark single crystal neutron diffraction values.  more » « less
Award ID(s):
1710671
PAR ID:
10067384
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
13
ISSN:
1463-9076
Page Range / eLocation ID:
8475 to 8487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials. 
    more » « less
  2. Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P 3̄ (No. 147, point group −3), C 2/ m (No. 12, point group 2), P 3 m 1 (No. 156, point group 3 m ) and P 3̄ m 1 (No. 164, point group −3 m ) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) 2 , in particular for the P 3̄ m 1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P 3̄ m 1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P 3̄ m 1 structure towards P 3̄. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C 2/ m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive. 
    more » « less
  3. As part of an effort to characterize clusters and intermediate phases likely to be encountered along solution reaction pathways that produce iron and aluminum oxide-hydroxides from Fe and Al precursors, the complete structure of Al10O14(OH)2 (akdalaite) was determined from a combination of single-crystal X-ray diffraction (SC-XRD) data collected at 100 K to define the Al and O positions, and solid-state nuclear magnetic resonance (NMR) and neutron powder diffraction (NPD) data collected at room temperature (~300 K) to precisely determine the nature of hydrogen in the structure. Two different synthesis routes produced different crystal morphologies. Using an aluminum oxyhydroxide floc made from mixing AlCl3 and 0.48 M NaOH, the product had uniform needle morphology, while using nanocrystalline boehmite (Vista Chemical Company Catapal D alumina) as the starting material produced hexagonal plates. Akdalaite crystallizes in the space group P63mc with lattice parameters of a = 5.6244(3) Å and c = 8.8417(3) Å (SC-XRD) and a = 5.57610(2) Å and c = 8.77247(6) Å (NPD). The crystal structure features Al13O40 Keggin clusters. The structural chemistry of akdalaite is nonideal but broadly conforms to that of ferrihydrite, the nanomineral with which it is isostructural. 
    more » « less
  4. Abstract. The formation of high-pressure oxyhydroxide phases spanned by the components AlOOH–FeOOH–MgSiO2(OH)2 in experiments suggests their capability to retain hydrogen in Earth's lower mantle. Understanding the vibrational properties of high-pressure phases provides the basis for assessing their thermal properties, which are required to compute phase diagrams and physical properties. Vibrational properties can be highly anisotropic, in particular for materials with crystal structures of low symmetry that contain directed structural groups or components. We used nuclear resonant inelastic X-ray scattering (NRIXS) to probe lattice vibrations that involve motions of 57Fe atoms in δ-(Al0.87Fe0.13)OOH single crystals. From the recorded single-crystal NRIXS spectra, we calculated projections of the partial phonon density of states along different crystallographic directions. To describe the anisotropy of central vibrational properties, we define and derive tensors for the partial phonon density of states, the Lamb–Mössbauer factor, the mean kinetic energy per vibrational mode, and the mean force constant of 57Fe atoms. We further show how the anisotropy of the Lamb–Mössbauer factor can be translated into anisotropic displacement parameters for 57Fe atoms and relate our findings on vibrational anisotropy to the crystal structure of δ-(Al,Fe)OOH. As a potential application of single-crystal NRIXS at high pressures, we discuss the evaluation of anisotropic thermal stresses in the context of elastic geobarometry for mineral inclusions. Our results on single crystals of δ-(Al,Fe)OOH demonstrate the sensitivity of NRIXS to vibrational anisotropy and provide an in-depth description of the vibrational behavior of Fe3+ cations in a crystal structure that may motivate future applications of NRIXS to study anisotropic vibrational properties of minerals. 
    more » « less
  5. Presented here is the design, synthesis, and study of a variety of novel hydrogen-bonding-capable π-conjugatedN-heteroacenes, 1,4-dihydropyrazino[2,3-b]quinoxaline-2,3-diones (DPQDs). The DPQDs were accessed from the corresponding weakly hydrogen-bonding dicyanopyrazinoquinoxaline (DCPQ) suspensions with excess potassium hydroxide, resulting in moderate to good yields. Both families of compounds were analyzed by UV–vis and NMR spectroscopy, where the consequences of hydrogen bonding capability could be assessed through the structure–property studies. Conversion of the DCPQs into hydrogen-bonding capable DPQDs results in modulation of frontier MO energies, higher molar extinction coefficients, enhanced crystallinity, and on-average higher thermal stability (where in some cases the 5% weight loss temperature is increased by up to 100 °C). Single crystal X-ray diffraction data could be obtained for three DPQDs. One reveals pairwise hydrogen bonding in the solid state as well as a herringbone packing arrangement rendering it a promising candidate for additional studies in the context of organic optoelectronic devices. 
    more » « less