Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P 3̄ (No. 147, point group −3), C 2/ m (No. 12, point group 2), P 3 m 1 (No. 156, point group 3 m ) and P 3̄ m 1 (No. 164, point group −3 m ) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) 2 , in particular for the P 3̄ m 1 phase, there is still a debate on the observed ground state crystal structuremore »
Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: a study on hydrogen bonding in polymorphs of palmitic acid
The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13 C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer ( R 22(8)) hydrogen bonding arrangement. Phases A 2 , B m and E m have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated A s is a mix of five forms, including 27.4% of B m and four novel phases not fully characterized here due to insufficient sample mass. For phases A 2 , B m , E m , and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1 σ level based upon agreement of DFT computed 13 COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters ( i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes more »
- Award ID(s):
- 1710671
- Publication Date:
- NSF-PAR ID:
- 10067384
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 20
- Issue:
- 13
- Page Range or eLocation-ID:
- 8475 to 8487
- ISSN:
- 1463-9076
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structural Chemistry of Akdalaite, Al10O14(OH)2, the Isostructural Aluminum Analogue of FerrihydriteAs part of an effort to characterize clusters and intermediate phases likely to be encountered along solution reaction pathways that produce iron and aluminum oxide-hydroxides from Fe and Al precursors, the complete structure of Al10O14(OH)2 (akdalaite) was determined from a combination of single-crystal X-ray diffraction (SC-XRD) data collected at 100 K to define the Al and O positions, and solid-state nuclear magnetic resonance (NMR) and neutron powder diffraction (NPD) data collected at room temperature (~300 K) to precisely determine the nature of hydrogen in the structure. Two different synthesis routes produced different crystal morphologies. Using an aluminum oxyhydroxide floc mademore »
-
Abstract. The formation of high-pressure oxyhydroxide phases spanned by the components AlOOH–FeOOH–MgSiO2(OH)2 in experiments suggests their capability to retain hydrogen in Earth's lower mantle. Understanding the vibrational properties of high-pressure phases provides the basis for assessing their thermal properties, which are required to compute phase diagrams and physical properties. Vibrational properties can be highly anisotropic, in particular for materials with crystal structures of low symmetry that contain directed structural groups or components. We used nuclear resonant inelastic X-ray scattering (NRIXS) to probe lattice vibrations that involve motions of 57Fe atoms in δ-(Al0.87Fe0.13)OOH single crystals. From the recorded single-crystal NRIXS spectra,more »
-
Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 Hmore »
-
The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPamore »