skip to main content


Title: Variation between individuals fosters regional species coexistence
Abstract

Although individual‐level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave‐up relationship between individuals’ competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non‐preferred habitats. Our results reconcile theory with empirical findings.

 
more » « less
Award ID(s):
1753810
NSF-PAR ID:
10067495
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
21
Issue:
10
ISSN:
1461-023X
Page Range / eLocation ID:
p. 1496-1504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Natural populations often show variation in traits that can affect the strength of interspecific interactions. Interaction strengths in turn influence the fate of pairwise interacting populations and the stability of food webs. Understanding the mechanisms relating individual phenotypic variation to interaction strengths is thus central to assess how trait variation affects population and community dynamics. We incorporated nonheritable variation in attack rates and handling times into a classical consumer–resource model to investigate how variation may alter interaction strengths, population dynamics, species persistence, and invasiveness. We found that individual variation influences species persistence through its effect on interaction strengths. In many scenarios, interaction strengths decrease with variation, which in turn affects species coexistence and stability. Because environmental change alters the direction and strength of selection acting upon phenotypic traits, our results have implications for species coexistence in a context of habitat fragmentation, climate change, and the arrival of exotic species to native ecosystems.

     
    more » « less
  2. Abstract

    Dispersal is one of the primary mechanisms by which organisms adapt to spatial and temporal variation in the environment. Theory predicts that increasing spatiotemporal variation drives selection for offspring dispersal away from their natal habitat and one another. However, due to inherent difficulties in measuring dispersal in plant systems, there are few empirical tests of the extent to which this hypothesis can explain variation in seed dispersal strategies.

    In this study, we characterized and compared the dispersal patterns of three closely related plant species that segregate across gradients in spatiotemporal variation in seasonal wetlands.

    We tracked individual seeds as they dispersed in their natural habitats to measure seed dispersal distance (the distance travelled from the maternal plant) and inter‐seed spread (distances between dispersed seeds) and to identify the plant traits causing within‐species variation in seed dispersal. We also evaluated the seed traits causing within‐species variation in seed flight distance and terminal velocity in a wind tunnel and a drop tube, respectively.

    We found that average seed dispersal distance was lowest in the species that occupies the most spatiotemporally variable habitat, contradicting our predictions; however, inter‐seed spread was lowest in the species from the least variable habitat, which aligned with our expectations.

    The maternal plant and seed traits explaining intraspecific variation in seed dispersal varied among species as well as the method used to measure dispersal potential. Two traits had non‐intuitive effects on dispersal, including pappus size, which reduced seed flight distance in two of the focal taxa.

    Overall, our results indicate that the differences we detected in seed dispersal among three closely related plant taxa can be only partially explained by current patterns of environmental variability in their respective habitats and that the traits driving within‐species variation in seed dispersal can evolve rapidly and change with the environmental context in which they are measured.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Theory predicts that species engaged in intraguild predation (IGP) can only coexist under limited conditions, yet IGP is common in nature. Habitat complexity can promote coexistence by reducing encounter rates, but little information is known about the contribution of differential habitat use. We hypothesized that differential use of alternative habitats promotes coexistence of an intraguild (IG) predator and prey. We evaluated predictions of this hypothesis with an experimental introduction of an IG predator fish into four natural stream communities that previously contained only the IG prey fish. We monitored the development of this IGP over the course of four years to determine how each species used alternative stream habitats. The introduced species preferred pool habitats while the resident species was more evenly distributed across pools and riffles. The density of the resident decreased in the pool habitat preferred by the invader, accompanied by a local increase in the mean of the resident size distribution. Selective predation by the invader on hatchling residents appears to impact the residents’ demographic response. The continued recruitment of resident juveniles in riffles, where the introduced species is rare, facilitated the persistence of the resident. This differential use of habitats was not accompanied by a change in the resident’s growth rates in either habitat. Our results showed that differential habitat selection and recruitment promoted persistence during an invasion involving IGP, which helps to bridge the gap between theory and observation in explaining coexistence in IGP systems.

     
    more » « less
  4. Abstract

    Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.

    In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.

    We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.

    Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.

    Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines.

     
    more » « less
  5. Abstract

    Despite numerous studies examining the fitness consequences of animal personalities, predictions concerning the relationship between personality and survival are not consistent with empirical observations. Theory predicts that individuals who are risky (i.e. bold, active and aggressive) should have higher rates of mortality; however, empirical evidence shows high levels of variation in behaviour–survival relationships in wild populations.

    We suggest that this mismatch between predictions under theory and empirical observations results from environmental contingencies that drive heterogeneity in selection. This uncertainty may constrain any universal directional relationships between personality traits and survival. Specifically, we hypothesize that spatiotemporal fluctuations in perceived risk that arise from variability in refuge abundance and competitor density alter the relationship between personality traits and survival.

    In a large‐scale manipulative experiment, we trapped four small mammal species in five subsequent years across six forest stands treated with different management practices in Maine, United States. Stands all occur within the same experimental forest but contain varying amounts of refuge and small mammal densities fluctuate over time and space. We quantified the effects of habitat structure and competitor density on the relationship between personality traits and survival to assess whether directional relationships differed depending on environmental contingencies.

    In the two most abundant species, deer mice and southern red‐backed voles, risky behaviours (i.e. higher aggression and boldness) predicted apparent monthly survival probability. Mice that were more aggressive (less docile) had higher survival. Voles that were bolder (less timid) had higher survival, but in the risky forest stands only. Additionally, traits associated with stress coping and de‐arousal increased survival probability in both species at high small mammal density but decreased survival at low density. In the two less abundant study species, there was no evidence for an effect of personality traits on survival.

    Our field experiment provides partial support for our hypothesis: that spatiotemporal fluctuations in refuge abundance and competitor density alter the relationship between personality traits and survival. Our findings also suggest that behaviours associated with stress coping and de‐arousal may be subject to density‐dependent selection and should be further assessed and incorporated into theory.

     
    more » « less