skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation between individuals fosters regional species coexistence
Abstract Although individual‐level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave‐up relationship between individuals’ competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non‐preferred habitats. Our results reconcile theory with empirical findings.  more » « less
Award ID(s):
1753810
PAR ID:
10067495
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
21
Issue:
10
ISSN:
1461-023X
Page Range / eLocation ID:
p. 1496-1504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taylor, Caz M (Ed.)
    Abstract: One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation‐dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth‐density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation‐based approach to quantifying IGRs in this situation, building on our previous approach for spatially non‐varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth‐density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities. 
    more » « less
  2. Spatial dynamics have long been recognized as an important driver of biodiversity. However, our understanding of species’ coexistence under realistic landscape configurations has been limited by lack of adequate analytical tools. To fill this gap, we develop a spatially explicit metacommunity model of multiple competing species and derive analytical criteria for their coexistence in fragmented heterogeneous landscapes. Specifically, we propose measures of niche and fitness differences for metacommunities, which clarify how spatial dynamics and habitat configuration interact with local competition to determine coexistence of species. We parameterize our model with a Bayesian approach using a 36-y time-series dataset of three Daphnia species in a rockpool metacommunity covering >500 patches. Our results illustrate the emergence of interspecific variation in extinction and recolonization processes, including their dependencies on habitat size and environmental temperature. We find that such interspecific variation contributes to the coexistence of Daphnia species by reducing fitness differences and increasing niche differences. Additionally, our parameterized model allows separating the effects of habitat destruction and temperature change on species extinction. By integrating coexistence theory and metacommunity theory, our study provides platforms to increase our understanding of species’ coexistence in fragmented heterogeneous landscapes and the response of biodiversity to environmental changes. 
    more » « less
  3. Abstract Intraspecific trait variation (ITV) is a widespread feature of life, but it is an open question how ITV affects between‐species coexistence. Recent theoretical studies have produced contradictory results, with ITV promoting coexistence in some models and undermining coexistence in others. Here we review recent work and propose a new conceptual framework to explain how ITV affects coexistence between two species. We propose that all traits belong to one of two categories: niche traits and hierarchical traits. Niche traits determine an individual's location on a niche axis or trade‐off axis, such that changing an individual's trait makes it perform better in some circumstances and worse in others. Hierarchical traits represent cases where conspecifics with different traits have the same niche, but one performs better under all circumstances, such that there are winners and losers. Our framework makes predictions for how intraspecific variation in each type of trait affects coexistence by altering stabilizing mechanisms and fitness differences. For example, ITV in niche traits generally weakens the stabilizing mechanism, except when it generates a generalist–specialist trade‐off. On the other hand, hierarchical traits tend to impact competitors differently, such that ITV in one species will strengthen the stabilizing mechanism while ITV in the other species will weaken the mechanism. We re‐examine 10 studies on ITV and coexistence, along with four novel models, and show that our framework can explain why ITV promotes coexistence in some models and undermines coexistence in others. Overall, our framework reconciles what were previously considered to be contrasting results and provides both theoretical and empirical directions to study the effect of ITV on species coexistence. 
    more » « less
  4. Abstract Resource competition among conspecifics is central to social evolution, as it serves as one of the primary selective pressures of group living. This is because the degree of competition for resources impacts the costs and benefits of social interactions. Despite this, how heterogeneity in resource competition drives variation in the type and quantity of long-term social relationships individuals foster has been overlooked. By measuring male mating competition and female foraging competition in a highly social, long-lived mammal, we demonstrate that individual variation in long-term intrasexual social relationships covaries with preferred habitat and experienced resource competition, and this effect differs based on the sex of the individual. Specifically, greater resource competition resulted in fewer social preferences, but the magnitude of the effect varied by both habitat and sex, whereas for social avoidances, both the directionality and magnitude of the effect of resource competition varied by habitat and sex. Together our work shows how fine-scale variation in individual socioecological niches (i.e., unique physical and social environments) can drive extensive variation in individual social behavior (here long-term relationships) within a population, thereby broadening current theories of social evolution. 
    more » « less
  5. ABSTRACT Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics. 
    more » « less