skip to main content


This content will become publicly available on December 1, 2024

Title: Interspecific behavioural interference and range dynamics: current insights and future directions
ABSTRACT

Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.

 
more » « less
Award ID(s):
2040883
NSF-PAR ID:
10493850
Author(s) / Creator(s):
;
Publisher / Repository:
John Wiley & Sons Ltd
Date Published:
Journal Name:
Biological Reviews
Volume:
98
Issue:
6
ISSN:
1464-7931
Page Range / eLocation ID:
2012 to 2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sekercioglu, C. ; Meynard, C.N. (Ed.)
    As species’ ranges shift in response to human-induced global changes, species interac- tions are expected to play a large role in shaping the resultant range dynamics and, subsequently, the composition of modified species assemblages. Most research on the impact of species interactions on range dynamics focuses on the effects of trophic interactions and exploitative competition for resources, but an emerging body of work shows that interspecific competition for territories and mates also affects species range shifts. As such, it is paramount to build a strong understanding of how these forms of behavioural interference between species impact landscape-scale patterns. Here, we examine recent (1997–2019) range dynamics of North American passerines to test the hypothesis that behavioural interference impacts the ease with which species move across landscapes. Over this 22 year period, we found that fine-scale spatial overlap between species (syntopy) increased more for species pairs that engage in interspecific territoriality than for those that do not. We found no evidence, however, for an effect of reproductive interference (hybridisation) on syntopy, and no effect of either type of interference on range-wide overlap (sympatry). Examining the net effects of species interactions on continent-scale range shifts may require species occurrence data span- ning longer time periods than are currently available for North American passerines, but our results show that interspecific territoriality has had an overall stabilising influ- ence on species coexistence over the past two decades. 
    more » « less
  2. Abstract

    Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.

     
    more » « less
  3. Abstract

    Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm‐dependent asexuals that produce non‐recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm‐dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping‐stones in speciation, or indirectly, by promoting the formation of pre‐ and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm‐dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short‐lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm‐dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.

     
    more » « less
  4. Abstract

    Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.

    In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.

    We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.

    Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.

    Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines.

     
    more » « less
  5. Abstract

    Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.

    Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.

    We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.

    Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.

    These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.

     
    more » « less