Abstract Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix‐assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On‐tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N‐trimethyl‐2‐(piperazin‐1‐yl)ethan‐1‐aminium iodide to chemically modify short‐chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization.
more »
« less
Ambient ionization mass spectrometry: real-time, proximal sample processing and ionization
The definition of ambient ionization is updated from “no sample preparation” to sample preparation proximal and in real time with the ionization and analysis step. We differentiate between ambient ionization methods and the direct and hyphenated techniques. Ambient ionization has been reviewed many times and we summarise some of the approaches that reviews have taken to categorize the many ambient ionization methods. Due to the large number of permutations, frequent redundancy and complexity of the 80+ techniques developed so far, none of the review classifications is successful in classifying all the ambient ionization methods based on the chosen scheme. Likewise our classification based on major sample preparation method also fails at finding a good category for every method, but it does highlight the central role that real-time, proximal sample preparation plays in ambient analysis.
more »
« less
- Award ID(s):
- 1508626
- PAR ID:
- 10067759
- Date Published:
- Journal Name:
- Analytical Methods
- Volume:
- 9
- Issue:
- 34
- ISSN:
- 1759-9660
- Page Range / eLocation ID:
- 4896 to 4907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Covering: 2009–2019 Over the last decade, methods in imaging mass spectrometry (IMS) have progressively improved and diversified toward a variety of applications in natural products research. Because IMS allows for the spatial mapping of the production and distribution of biologically active molecules in situ , it facilitates phenotype and organelle driven discovery efforts. As practitioners of IMS for natural products discovery, we find one of the most important aspects of these experiments is the sample preparation and compatibility with different ionization sources that are available to a given researcher. As such, we have focused this mini review to cover types of ionization sources that have been used in natural products discovery applications and provided concrete examples of use for natural products discovery while discussing the advantages and limitations of each method. We aim for this article to serve as a resource to guide the broader natural product community interested in IMS toward the application/method that would best serve their natural product discovery needs given the sample and analyte(s) of interest. This mini review has been limited to applications using natural products and thus is not exhaustive of all possible ionization methods which have only been applied to image other types of samples such as mammalian tissues. Additionally, we briefly review how IMS has been coupled with other imaging platforms, such as microscopy, to enhance information outputs as well as offer our future perspectives on the incorporation of IMS in natural products discovery.more » « less
-
Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography‐mass spectrometry, liquid chromatography‐mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean‐up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects.more » « less
-
Per- and polyfluoroalkyl substances (PFAS), an emerging class of toxic anthropogenic chemicals persistent in the environment, are currently regulated at the low part-per-trillion level worldwide in drinking water. Quantification and screening of these compounds currently rely primarily on liquid chromatography hyphenated to mass spectrometry (LC-MS). The growing need for quicker and more robust analysis in routine monitoring has been, in many ways, spearheaded by the advent of direct ambient mass spectrometry (AMS) technologies. Direct analysis in real time (DART), a plasma-based ambient ionization technique that permits rapid automated analysis, effectively ionizes a broad range of compounds, including PFAS. This work evaluates the performance of DART-MS for the screening and quantification of PFAS of different chemical classes, employing a central composite design (CCD) to better understand the interactions of DART parameters on their ionization. Furthermore, in-source fragmentation of the model PFAS was investigated based on the DART parameters evaluated. Preconcentration of PFAS from water samples was achieved by solid phase microextraction (SPME), and extracts were analyzed using the optimized DART-MS conditions, which allowed obtaining linear dynamic ranges (LDRs) within 10 and 5000 ng/L and LOQs of 10, 25, and 50 ng/L for all analytes. Instrumental analysis was achieved in less than 20 s per sample.more » « less
-
The principles governing ionization techniques used in thermal ionization mass spectrometers are relatively well understood and have remained largely unchanged for many decades. Though significant advances have been made in ion signal quantification for isotope ratio measurements, particularly for analyses of small samples by using multiple detector systems and low-noise amplifiers, the fundamental approach to sample ionization has received little focus. Modern TIMS techniques attempting to achieve parts-per-million level isotope ratios precisions are realizing limits imposed by the physics of the ionization source. A type of high-ionization efficiency thermal source employed in nuclear physics communities for decades is the so-called cavity thermal ionization source. Here, we provide a proof-of-concept study that shows cavity sources may provide a path forward to achieve a new level of precision in isotope ratio measurements from solid samples. We document our new, simple, cavity ion source design, show preliminary results from Nd isotope measurements, and discuss these new data in the context of current precision limits imposed during traditional thermal ionization methods. We show that, within the limits of our testbed mass spectrometer, mass fractionation within the cavity ion source appears similar to that from filament ion sources. We also demonstrate that oxide- versus -metal ion production plays a significant role in cavity ionization processes for Nd. Cavity ion sources may provide a viable path forward to achieving isotope ratios precisions at the sub-ppm precision level.more » « less
An official website of the United States government

