Abstract. Extractive electrospray ionization (EESI) has been a well-knowntechnique for high-throughput online molecular characterization of chemicalreaction products and intermediates, detection of native biomolecules, invivo metabolomics, and environmental monitoring with negligible thermal andionization-induced fragmentation for over two decades. However, the EESIextraction mechanism remains uncertain. Prior studies disagree on whetherparticles between 20 and 400 nm diameter are fully extracted or if theextraction is limited to the surface layer. Here, we examined the analyteextraction mechanism by assessing the influence of particle size and coatingthickness on the detection of the molecules therein. We find that particlesare extracted fully: organics-coated NH4NO3 particles with afixed core volume (156 and 226 nm in diameter without coating) showedconstant EESI signals for NH4NO3 independent of the shell coatingthickness, while the signals of the secondary organic molecules comprisingthe shell varied proportionally to the shell volume. We also found that theEESI sensitivity exhibited a strong size dependence, with an increase insensitivity by 1–3 orders of magnitude as particle size decreasedfrom 300 to 30 nm. This dependence varied with the electrospray (ES)droplet size, the particle size and the residence time for coagulation in theEESI inlet, suggesting that the EESI sensitivity was influenced by thecoagulation coefficient between particles and ES droplets. Overall, ourresults indicate that, in the EESI, particles are fully extracted by the ESdroplets regardless of the chemical composition, when they are collected bythe ES droplets. However, their coalescence is not complete and dependsstrongly on their size. This size dependence is especially relevant whenEESI is used to probe size-varying particles as is the case in aerosolformation and growth studies with size ranges below 100 nm.
more »
« less
New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles
Real-time in situ mass spectrometry analysis of airborne particles is important in a number of applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semi-solid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and the sensitivity of this technique to the surface layers. It is shown that for NaNO3 particles coated with glutaric acid (GA), very little of the solid NaNO3 core is sampled compared to the GA coating, while for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter and extracted detects much more core material compared to EESI-MS in both cases. These results show that for the experimental conditions used here, EESI-MS does not sample the entire particle, but instead is more sensitive to surface layers. Separate experiments on single component particles of NaNO3, glutaric acid or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role.
more »
« less
- Award ID(s):
- 1647386
- PAR ID:
- 10074944
- Date Published:
- Journal Name:
- Analytical chemistry
- Volume:
- 90
- Issue:
- 3
- ISSN:
- 0003-2700
- Page Range / eLocation ID:
- 2055-2062
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many mass spectrometry methods using various ionization sources provide bulk composition of airborne particles, but little is known about the surface species that play a major role in determining their physicochemical properties that impact air quality, climate, and health. The present work shows that the composition of surface layers of atmospherically relevant submicron organic particles can be probed without the use of an external ionization source. Solid dicarboxylic acid particles are used as models, with glutaric acid being the most efficient at generating ions. Coating with small diacids or products from α-pinene ozonolysis demonstrates that ions are ejected from the surface, providing surface molecular characterization of organic particles on the fly. This unique approach provides a path forward for elucidating the role of the surface in determining chemical and physical properties of particles, including heterogeneous reactions, particle growth, water uptake, and interactions with biological systems.more » « less
-
Both ambient and laboratory-generated particles can have a surface composition different from the bulk, but there are currently few analytical techniques available to probe these differences. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was applied to solid, laboratory-generated particles with core–shell morphologies formed from a variety of dicarboxylic acids. The soft ionization facilitated parent peak detection for the two compounds, from which the depth probed could be determined from the relative signal intensities. Two different configurations of a custom-made nebulizer are reported that yield different probe depths. In the “orthogonal mode,” with the nebulizer ∼10 centimeters away from the particle stream and at a 90° angle to the MS inlet, evaporation of the nebulizer droplets forms ions before interaction with the particles. The probe depth for orthogonal mode EASI-MS is shown to be 2–4 nm in these particle systems. In the “droplet mode”, the nebulizer and particle streams are in close proximity to each other and the MS inlet so that the particles interact with charged liquid droplets. This configuration resulted in full dissolution of the particles and gives particle composition similar to that from collection on filters and extraction of the particles (bulk). These studies establish that EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.more » « less
-
Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the film interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.more » « less
-
The application of direct analysis in real-time mass spectrometry (DART-MS), which is finding increasing use in atmospheric chemistry, to two different laboratory model systems for airborne particles is investigated: (1) submicron C3–C7 dicarboxylic acid (diacid) particles reacted with gas-phase trimethylamine (TMA) or butylamine (BA) and (2) secondary organic aerosol (SOA) particles from the ozonolysis of α-cedrene. The diacid particles exhibit a clear odd–even pattern in their chemical reactivity toward TMA and BA, with the odd-carbon diacid particles being substantially more reactive than even ones. The ratio of base to diacid in reacted particles, determined using known diacid–base mixtures, was compared to that measured by high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), which vaporizes the whole particle. Results show that DART-MS probes ∼ 30 nm of the surface layer, consistent with other studies on different systems. For α-cedrene SOA particles, it is shown that varying the temperature of the particle stream as it enters the DART-MS ionization region can distinguish between specific components with the same molecular mass but different vapor pressures. These results demonstrate the utility of DART-MS for (1) examining reactivity of heterogeneous model systems for atmospheric particles and (2) probing components of SOA particles based on volatility.more » « less