skip to main content


Title: Melt‐Centrifuged (Bi,Sb) 2 Te 3 : Engineering Microstructure toward High Thermoelectric Efficiency
Abstract

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κlcompared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays azTvalue of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3and Bi0.3Sb1.7Te3could produce a high deviceZTexceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique.

 
more » « less
NSF-PAR ID:
10068056
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
34
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    PbSe is an attractive thermoelectric material due to its favorable electronic structure, high melting point, and lower cost compared to PbTe. Herein, the hitherto unexplored alloys of PbSe with NaSbSe2(NaPbmSbSem+2) are described and the most promising p‐type PbSe‐based thermoelectrics are found among them. Surprisingly, it is observed that below 500 K, NaPbmSbSem+2exhibits unorthodox semiconducting‐like electrical conductivity, despite possessing degenerate carrier densities of ≈1020cm−3. It is shown that the peculiar behavior derives from carrier scattering by the grain boundaries. It is further demonstrated that the high solubility of NaSbSe2in PbSe augments both the thermoelectric properties while maintaining a rock salt structure. Namely, density functional theory calculations and photoemission spectroscopy demonstrate that introduction of NaSbSe2lowers the energy separation between the L‐ and Σ‐valence bands and enhances the power factors under 700 K. The crystallographic disorder of Na+, Pb2+, and Sb3+moreover provides exceptionally strong point defect phonon scattering yielding low lattice thermal conductivities of 1–0.55 W m‐1K‐1between 400 and 873 K without nanostructures. As a consequence, NaPb10SbSe12achieves maximumZT≈1.4 near 900 K when optimally doped. More importantly, NaPb10SbSe12maintains highZTacross a broad temperature range, giving an estimated recordZTavgof ≈0.64 between 400 and 873 K, a significant improvement over existing p‐type PbSe thermoelectrics.

     
    more » « less
  2. Abstract

    Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials.

     
    more » « less
  3. The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach. 
    more » « less
  4. Full Heusler compounds have long been discovered as exceptional n-type thermoelectric materials. However, no p-type compounds could match the high n-type figure of merit ( ZT ). In this work, based on first-principles transport theory, we predict the unprecedentedly high p-type ZT = 2.2 at 300 K and 5.3 at 800 K in full Heusler CsK 2 Bi and CsK 2 Sb, respectively. By incorporating the higher-order phonon scattering, we find that the high ZT value primarily stems from the ultralow lattice thermal conductivity ( κ L ) of less than 0.2 W mK −1 at room temperature, decreased by 40% compared to the calculation only considering three-phonon scattering. Such ultralow κ L is rooted in the enhanced phonon anharmonicity and scattering channels stemming from the coexistence of antibonding-induced anharmonic rattling of Cs atoms and low-lying optical branches. Moreover, the flat and heavy nature of valence band edges leads to a high Seebeck coefficient and moderate power factor at optimal hole concentration, while the dispersive and light conduction band edges yield much larger electrical conductivity and electronic thermal conductivity ( κ e ), and the predominant role of κ e suppresses the n-type ZT . This study offers a deeper insight into the thermal and electronic transport properties in full Heusler compounds with strong phonon anharmonicity and excellent thermoelectric performance. 
    more » « less
  5. Abstract

    Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of meritZTin the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches −280 µV K−1at 673 K with a low κlatof 0.56 W m−1K−1at 573 K. Consequently, a peakZTvalue of 1.38 is achieved at 623 K. Moreover, a high averageZTavgvalue of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.

     
    more » « less