skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: The Thermoelectric Properties of Bismuth Telluride
Abstract Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials.  more » « less
Award ID(s):
1729594 1729487
PAR ID:
10461107
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
5
Issue:
6
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low‐dimensional thermoelectric materials systems are proven to possess improved thermoelectric performance, either by enhancing the power factorS2σthrough quantum confinement, or decreasing thermal conductivity with numerous interfaces. The 2D tellurium, also called tellurene, is a newly discovered 2D material which showed great potential for thermoelectric applications. In this article, high‐quality tellurene‐like nanosheets are synthesized by the hydrothermal method and assembled into nanostructured bulk materials by low‐temperature hot press, and their thermoelectric performance is investigated. Ultraviolet–ozone treatment is used to remove organic surface ligands. Doping is realized with surface doping with chalcogenidometalates. It is found that the Seebeck coefficient and the thermal conductivity of the nanosheet‐assembled bulk samples increased by ≈20% and decreased by 43% compared to bulk tellurium, respectively. Meanwhile, the carrier mobility is approaching, yet still lower than bulk tellurium. Overall, the best bulk sample possesses azTof 0.1 at room temperature which is comparable to bulk Te. By further improving the mobility, this solution processable material can provide useful thermoelectric performance for room‐temperature applications. 
    more » « less
  2. Abstract The potential of an environmentally friendly and emerging chalcogenide perovskite CaZrSe3for thermoelectric applications is examined. The orthorhombic phase of CaZrSe3has an optimum band gap (1.35–1.40 eV) for single‐junction photovoltaic applications. The predictions reveal that CaZrSe3possesses an absorption coefficient of ≈4 × 105cm−1at photon energies of 2.5 eV with an early onset of optical absorption (≈0.2 eV) well below the optimum band gap. Seebeck coefficient,S, is inversely proportional to the carrier mobility as the calculated average effective mass for electrons is higher than for holes;p‐type doping enhances the electrical conductivity, σ. The electronic thermal conductivityκeremains low at all temperatures. The upper limit of the thermoelectric figure of merit (ZTe) attains ≈1.0 when doped at specific chemical potentials, while a high Seebeck coefficient contributes to the ZTe = 1.95 at 50 K forp‐type doping with 1018cm−3carrier concentration, demonstrating high thermoelectric efficiency. 
    more » « less
  3. Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system. 
    more » « less
  4. This work evaluates wearable thermoelectric (TE) devices consisting of nanocomposite thermoelectric materials, aluminum nitride ceramic headers, and a flexible and stretchable circuit board. These types of wearable systems are part of a broader effort to harvest thermal energy from the body and convert it into electrical energy to power wearable electronics. Thermoelectric generators are made of p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3. The nanocomposite thermoelectric materials investigated in this research address the two fundamental challenges for body heat harvesting. The first challenge is related to the unavailability of high zT n-type materials near the body temperature. The second challenge is related to the thermoelectric power factor. To improve the zT, one has to increase the power factor simultaneously while reducing the thermal conductivity. Our nanocomposites result in enhancement of the TE power factor along with the reduction of the thermal conductivity. The fundamental reason is a nanoscale effect that happens only when the energy distribution function of the carriers does not relax to that of the bulk material in the crystallites. Ten p-type and ten n-type nanocomposite ingots were synthesized and characterized in this research. All ingots were characterized versus their thermoelectric properties and they all showed similarly enhanced properties. Our nanocomposites, compared to commercial materials, have better zT and thermal resistivity by 40% and 75% for p-type, respectively, and 15% and 140% for n-type. Compared to the state-of-the-art materials, our nanocomposites produce significantly higher power due to their optimized properties for the body temperature. 
    more » « less
  5. Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices. 
    more » « less