The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. This Work in Progress paper describes the history of the Redshirt in Engineering Consortium; the Redshirt model as a framework for addressing issues related to diversity, equity, and inclusion in engineering; and initial lessons learned from the implementation of the model across unique institutional contexts. 
                        more » 
                        « less   
                    
                            
                            Board 105: The Redshirt in Engineering Consortium: Progress and Early Insights
                        
                    
    
            The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. The redshirt model is comprised of seven main programmatic components aimed at improving the engagement, retention, and graduation of students underrepresented in engineering. These components include: “intrusive” academic advising and support services, an intensive first-year academic curriculum, community-building (including pre-matriculation summer programs), career awareness and vision, faculty mentorship, NSF S-STEM scholarships, and second-year support. Successful implementation of these activities is intended to produce two main long-term outcomes: a six-year graduation rate of 60%-75% for redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, and women students in engineering at participating universities. In the first year of the grant (AY 16-17), SSPs developed their own redshirt programs, hired and trained staff, and got their programs off the ground. ERIs implemented faculty mentorship programs and expanded support to redshirt students into their sophomore year. In the second year (AY 17-18), redshirt programs were expanded at the ERIs while SSPs welcomed their first cohorts of redshirt students. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, identifying distinctions between them in addition to highlighting common elements. First-year assessment results are presented for the ERIs based on student surveys, performance, and retention outcomes. Ongoing research into faculty experiences is investigating how participation as mentors for redshirt students changes faculty mindsets and instructional practices. Ongoing research into student experiences is investigating how the varied curricula, advising, and cohort models used across the six institutions influence student retention and sense of identity as engineering students. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1564681
- PAR ID:
- 10068253
- Date Published:
- Journal Name:
- ASEE annual conference & exposition proceedings
- ISSN:
- 2153-5868
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A group of interdisciplinary faculty at Hostos Community College, an institution that serves a largely first-generation student population that is over 90% minority, 69% women, who often live below the poverty line and lack academic role models, has created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program designed to increase the number of low-income academically talented students who persevere and graduate with associate and baccalaureate degrees in engineering. HEAT provides its scholars with financial support, a combined mentoring model where scholars work with STEM faculty and more advanced engineering students throughout the year, and the opportunity to participate in mentored research experiences. Student successes include improved GPAs, rates of retention, graduation from 2- and 4-year institutions, and acceptance to STEM graduate programs or entering the workforce as compared to students not participating in HEAT. Surveys of Scholars indicate that combined mentorship is the most important component of HEAT. Thus, HEAT is a model of intervention that serves to expand the STEM pipeline to create a more inclusive and diverse engineering workforce.more » « less
- 
            Low-income students are underrepresented in engineering and are more likely to struggle in engineering programs. Such students may be academically talented and perform well in high school, but may have relatively weak academic preparation for college compared to students who attended better-resourced schools. Four-year engineering and computer science curricula are designed for students who are calculus-ready, but many students who are eager to become engineers or computer scientists need additional time and support to succeed. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 as a collaborative effort to build on the success of three existing “academic redshirt” programs and expand the model to three new schools. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to promising engineering students from low-income backgrounds. The goal of the program is to enhance the students’ ability to successfully graduate with engineering or computer science degrees. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, providing a variety of models for how an extra preparatory year or other intensive academic preparatory programs can be accommodated. This paper will pay particular attention to the ways that institutional context shapes the implementation of the redshirt model. For instance, what do the redshirt admissions and selection processes look like at schools with direct-to-college admissions versus schools with post-general education admissions? What substantive elements of the first-year curriculum are consistent across the consortium? Where variation in curriculum occurs, what are the institutional factors that produce this variation? How does the redshirt program fit with other pre-existing academic support services on campus, and what impact does this have on the redshirt program’s areas of focus? Program elements covered include first-year curricula, pre-matriculation summer programs, academic advising and support services, admissions and selection processes, and financial aid. Ongoing assessment efforts and research designed to investigate how the various redshirt models influence faculty and student experiences will be described.more » « less
- 
            Across the country, less than two-thirds of engineering students persist and earn a degree in engineering. A considerable amount of research on the topic has been conducted, leading to a few key ideas on why students leave engineering. In particular, disinterest in the curriculum, a limited sense of belonging, perception of inadequate academic ability, and disconnect between learning style and instruction mode are some reasons that students depart engineering. Consequently, many first-year programs aim to address one or more of these issues. The ABC program at XXX seeks to improve undergraduate civil engineering and construction management education, as well as increase retention and graduation by specifically focusing on students and curriculum in the first two years of the civil & environmental engineering and construction management (CEEC/CM) programs. Retention and graduation rates are on the lower side of national averages; therefore, faculty at the institution are taking the lead and making changes within the department. One aspect of the program is community cohesion building (CCB), where first-year students create connections, engage in community and engineering design projects, and gain exposure to CEEC/CM professions. Specific objectives are to increase the sense of learning community among students and between students and faculty, as well as increase retention in the first two years. Through biweekly meetings, participants in CCB build connections with freshman CEEC/CM peers, upper level CEEC/CM undergraduate students, CEEC graduate students, and CEEC/CM faculty. Participants also engage in the engineering design process and compete in a national engineering design challenge geared toward freshman and sophomore students. This paper describes the first one-and-a-half years of CCB implementation of a five-year grant. We present the program structure, challenges, changes, and successes. This information should prove useful to other institutions who are in the process of implementing new first-year programs, especially for institutions who have similar characteristics (i.e., urban setting, commuter school, highly diverse, high proportion of first generation students). Program evaluation focuses on the following items related to CCB objectives: 1) increase in sense of belonging as measured by an increase in social networks (tool: student survey), and 2) increase in CEEC/CM retention between freshman/sophomore and sophomore/junior years (tool: institutional data).more » « less
- 
            null (Ed.)Across the country, less than two-thirds of engineering students persist and earn a degree in engineering. A considerable amount of research on the topic has been conducted, leading to a few key ideas on why students leave engineering. In particular, disinterest in the curriculum, a limited sense of belonging, perception of inadequate academic ability, and disconnect between learning style and instruction mode are some reasons that students depart engineering. Consequently, many first-year programs aim to address one or more of these issues. The ABC program at XXX seeks to improve undergraduate civil engineering and construction management education, as well as increase retention and graduation by specifically focusing on students and curriculum in the first two years of the civil & environmental engineering and construction management (CEEC/CM) programs. Retention and graduation rates are on the lower side of national averages; therefore, faculty at the institution are taking the lead and making changes within the department. One aspect of the program is community cohesion building (CCB), where first-year students create connections, engage in community and engineering design projects, and gain exposure to CEEC/CM professions. Specific objectives are to increase the sense of learning community among students and between students and faculty, as well as increase retention in the first two years. Through biweekly meetings, participants in CCB build connections with freshman CEEC/CM peers, upper level CEEC/CM undergraduate students, CEEC graduate students, and CEEC/CM faculty. Participants also engage in the engineering design process and compete in a national engineering design challenge geared toward freshman and sophomore students. This paper describes the first one-and-a-half years of CCB implementation of a five-year grant. We present the program structure, challenges, changes, and successes. This information should prove useful to other institutions who are in the process of implementing new first-year programs, especially for institutions who have similar characteristics (i.e., urban setting, commuter school, highly diverse, high proportion of first generation students). Program evaluation focuses on the following items related to CCB objectives: 1) increase in sense of belonging as measured by an increase in social networks (tool: student survey), and 2) increase in CEEC/CM retention between freshman/sophomore and sophomore/junior years (tool: institutional data).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    