skip to main content


Title: Work in Progress: Institutional Context and the Implementation of the Redshirt in Engineering Model at Six Universities
Low-income students are underrepresented in engineering and are more likely to struggle in engineering programs. Such students may be academically talented and perform well in high school, but may have relatively weak academic preparation for college compared to students who attended better-resourced schools. Four-year engineering and computer science curricula are designed for students who are calculus-ready, but many students who are eager to become engineers or computer scientists need additional time and support to succeed. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 as a collaborative effort to build on the success of three existing “academic redshirt” programs and expand the model to three new schools. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to promising engineering students from low-income backgrounds. The goal of the program is to enhance the students’ ability to successfully graduate with engineering or computer science degrees. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, providing a variety of models for how an extra preparatory year or other intensive academic preparatory programs can be accommodated. This paper will pay particular attention to the ways that institutional context shapes the implementation of the redshirt model. For instance, what do the redshirt admissions and selection processes look like at schools with direct-to-college admissions versus schools with post-general education admissions? What substantive elements of the first-year curriculum are consistent across the consortium? Where variation in curriculum occurs, what are the institutional factors that produce this variation? How does the redshirt program fit with other pre-existing academic support services on campus, and what impact does this have on the redshirt program’s areas of focus? Program elements covered include first-year curricula, pre-matriculation summer programs, academic advising and support services, admissions and selection processes, and financial aid. Ongoing assessment efforts and research designed to investigate how the various redshirt models influence faculty and student experiences will be described.  more » « less
Award ID(s):
1564681
NSF-PAR ID:
10068251
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. The redshirt model is comprised of seven main programmatic components aimed at improving the engagement, retention, and graduation of students underrepresented in engineering. These components include: “intrusive” academic advising and support services, an intensive first-year academic curriculum, community-building (including pre-matriculation summer programs), career awareness and vision, faculty mentorship, NSF S-STEM scholarships, and second-year support. Successful implementation of these activities is intended to produce two main long-term outcomes: a six-year graduation rate of 60%-75% for redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, and women students in engineering at participating universities. In the first year of the grant (AY 16-17), SSPs developed their own redshirt programs, hired and trained staff, and got their programs off the ground. ERIs implemented faculty mentorship programs and expanded support to redshirt students into their sophomore year. In the second year (AY 17-18), redshirt programs were expanded at the ERIs while SSPs welcomed their first cohorts of redshirt students. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, identifying distinctions between them in addition to highlighting common elements. First-year assessment results are presented for the ERIs based on student surveys, performance, and retention outcomes. Ongoing research into faculty experiences is investigating how participation as mentors for redshirt students changes faculty mindsets and instructional practices. Ongoing research into student experiences is investigating how the varied curricula, advising, and cohort models used across the six institutions influence student retention and sense of identity as engineering students. 
    more » « less
  2. The Greater Equity, Access, and Readiness for Engineering and Technology (GEARSET) Program, an NSF funded S-STEM program was developed GEARSET to address several institutional needs at the university. The original target population for the GEARSET program was identified as a subset of the students who applied to the College of Engineering and do not meet all the admissions requirements and are admitted to an Exploratory Studies major in the university’s University College. Historical data indicates that approximately 170 students per year with a high school GPA of 3.00 or higher are admitted to Exploratory Studies because they do not meet the College of Engineering admissions criteria. Of these, roughly 78 students remain at the University after one year. Of those 78, only about 45 students per year transition to college of Engineering majors by the end of their first year. These numbers do not accurately reflect the ability of these students, but rather are due in part to curricular bottlenecks, lack of institutional support, and lack of significant relevant exposure of students to material meant to engage their engineering future selves. This data motivated the creation of the GEARSET program. Specifically, the program was designed to 1. Increase recruitment, retention, student success, and transfer rates into engineering of students who are not admitted directly to engineering but who are instead admitted to the university’s University College. 2. Increase meaningfulness and engineering relevance of pre-engineering curriculum. 3. Increase diversity within the student population of various engineering departments in the College of Engineering. 4. Remove bottlenecks in curriculum and improve access to engineering and decrease length to degree. A key aspect of the program is a curated curriculum. All students in the GEARSET program are enrolled in multiple courses historically proven to promote better understanding of the key areas of Math, Chemistry and Physics needed to be successful engineers. All students have access to advisors within the COE to help them better understand the programs, curriculum and professional outcomes of each discipline of Engineering. Another key component of the program is that low income students in the GEARSET cohort who successfully transfer to a major within the COE after one year receive scholarship support. Here we describe the Program, the results to date, and the impact of the recent global pandemic and the subsequent transition to test optional admissions criteria on the definition of the GEARSET cohort, program implementation, and student participation. 
    more » « less
  3. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. This Work in Progress paper describes the history of the Redshirt in Engineering Consortium; the Redshirt model as a framework for addressing issues related to diversity, equity, and inclusion in engineering; and initial lessons learned from the implementation of the model across unique institutional contexts. 
    more » « less
  4. null (Ed.)
    Wright College, an urban open-access community college, independently accredited within the City Colleges of Chicago (CCC) system, is a federally recognized Hispanic-Serving Institution (HSI) with one of the largest community college enrollments of Hispanic students in Illinois. Wright College’s student success rates measured by completion have been strong and improving relative to other national urban community colleges, but are below state and national averages. In 2015 the college piloted a selective guaranteed admission program, Engineering Pathways (EP), to one of the nation’s top engineering schools (The Grainger College of Engineering at the University of Illinois Urbana Champaign, UIUC). Initial results for the small first-year cohort were very positive: 89% transfer rate and all students who transferred to UIUC graduated. The program’s initial success rested on a) cohort model with a small number of students and strong controls; b) co-branding that attracted local students interested in pursuing engineering at UIUC who might not otherwise have enrolled at Wright; c) academic rigor (small class size with Wright College’s curricula matching UIUC); d) robust student support services and structures; and e) a holistic college commitment to equity and inclusive excellence. Wright College obtained a National Foundation Science (NSF)-HSI research grant in 2018 to support the Engineering Pathways. The grant examines EP students’ self-efficacy and sense of belonging. Wright College foregrounds student “belonging” in its equity efforts. Equity work calls for the systemic analysis and tracking of student performance, engagement and participation throughout the student life-cycle, with data-informed analysis of behavior and outcomes through a lens of race, gender and wealth. EP students shared similar racial and ethnic backgrounds as Wright College’s non-engineering students. They attended the same elementary and public schools, have similar family structures, socioeconomic status (SES) and supports. NSF resources assisted Wright College’s creation of a contextualized engineering summer bridge and a more structured pre-engineering program. As enrollment in the EP program increased, the college dedicated additional resources, including faculty, enhanced student support, and guaranteed junior-level transfer to other nearby baccalaureate engineering schools. Central to the effort was significantly greater structure and monitoring of student performance, including academic and support frameworks for non-EP students. Wright College and baccalaureate transfer institutions reviewed and updated articulation agreements. In the Engineering Summer Bridge Program’s first two years, forty-five (45) students who would otherwise have been denied admission to EP are thriving and are positioned to transfer to four-year engineering programs. In this paper, Wright College will review the college’s equity efforts, the structure and implementation of the Engineering Pathways, and the creation of new engineering transfer programs. It will explore visible and invisible barriers to students’ success, contrasting students in Wright College’s EP program with other Wright College students. The authors argue that the systemic pursuit of equity, particularly with a focus on self-efficacy, belonging, and the creation of an environment committed to inclusive excellence, will result in very strong student outcomes. 
    more » « less
  5. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less