skip to main content

Title: Boundary Spanning and Engineering: A Qualitative Systematic Review
Abstract Background

Engineers are often expected to span organizational, cultural, stakeholder, geographic, temporal, and other boundaries. Yet, few studies on boundary spanning have appeared in the engineering education literature, suggesting the need for improved theoretical and conceptual foundations to guide empirical studies of boundary spanning in engineering.


To develop a more comprehensive understanding of boundary spanning, this study addresses five research questions: (a) What types of boundaries have been identified as topics of interest? (b) How are boundary spanners and boundary spanning defined? (c) What types of activities and behaviors comprise or have been linked to boundary spanning? (d) What individual competencies and characteristics have been proposed or studied as important for boundary spanning? and (e) What boundary spanning themes are most prominent in studies of engineers and other technical professionals?


Using a qualitative systematic review process, we identified and analyzed 72 scholarly papers from multiple disciplines. Multiple reviewers coded each paper using a hybrid deductive‐inductive content analysis process to identify key themes related to boundary spanning.


The analysis resulted in a framework consisting of six boundary types, three types of roles and definitions, and five types of activities. Discussion of boundary spanning competencies was limited in the collected works, and only seven papers exclusively focused on engineers. We conclude by proposing boundary spanning as an important meta‐attribute for engineers and a promising lens for investigating engineering practice. We also relate our findings to the engineering education literature and suggest directions for future research.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Page Range / eLocation ID:
p. 380-413
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g., websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers. 
    more » « less
  2. Three broad issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory oriented; and 3) the lack of diversity (representation of a wide range of people) and lack of inclusion (incorporation of different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. These are not new challenges in engineering education, rather they are persistent and difficult to change. There have been countless calls to recruit and retain women and underrepresented minority group members into engineering careers and numerous strategies proposed to improve diversity, inclusion, and retention, as well as to calls to examine socio-technical integration in engineering cultures and education for professional formation. Despite the changes in some disciplinary profiles in engineering and the curricular reforms within engineering education, there still has not been the deep transformation needed to integrate inclusionary processes and thinking into professional formation. In part, the reason is that diversity and inclusion are still framed as simply “numbers problems” to be solved. What is needed instead is an approach that understands and explores diversity and inclusion as interrelated with the epistemological (what do engineers need to know) and ontological (what does it mean to be an engineer) underpinnings of engineering. These issues are highly complex, interconnected, and not amenable to simple solutions, that is, they are “wicked” problems. They require design thinking. Thus our NSF-funded Research in the Formation of Engineers (RFE) study utilizes a design thinking approach and research activities to explore foundational understandings of formation and diversity and inclusion in engineering while addressing the three project objectives: 1) Better prepare engineers for today’s workforce; 2) Broaden understandings of engineering practice as both social and technical; and 3) Create and sustain more diverse and inclusionary engineering programs. The project is organized around the three phases of the design process (inspiration, ideation, and implementation), and embedded within the design process is a longitudinal, multiphase, mixed-methods study. Although the goal is to eventually study these objectives on a broader scale, we begin with a smaller context: the School of Electrical and Computer Engineering (ECE) and the Weldon School of Biomedical Engineering (BME) at Purdue University. These schools share similarities with some common coursework and faculty, but also provide contrasts as BME’s undergraduate population, on average for recent semesters, has been 44-46% female, where ECE has been 13-14% female. Although BME has slightly more underrepresented minority students (7-8% versus 5%), approximately 60% of BME students are white, versus 40% for ECE. It is important to note that Purdue’s School of ECE offers B.S. degrees in Electrical Engineering (EE) and Computer Engineering (CmpE), which reflect unique disciplinary cultures. Additionally, the schools differ significantly on undergraduate enrollment. The BME enrollment was 278, whereas ECE’s enrollment was 675 in EE and 541 in CmpE1. In this paper we describe the background literature and the research design, including the study contexts, target subject populations, and procedures for quantitative and qualitative data collection and analysis. In addition, we present the data collected during the first phase of the research project. In our poster, we will present preliminary analysis of the first phase data. 
    more » « less
  3. null (Ed.)
    Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given the multifaceted and complex nature of ethics, measuring and assessing how students’ perceive its various aspects (e.g. those related to ethical climate, moral awareness, moral disengagement etc.) has proven challenging. Furthermore, investigating how students’ perceptions of these concepts vary over time adds another layer of complexity for analyzing our longitudinal data. For example, a student might show increased understanding in one aspect of ethics over time and consistency in another, making it difficult to identify patterns or the impacts of specific influences. Due to this large variation in student experiences and perspectives, we used single case analysis to analyze the longitudinal interviews of a single participant, Corvin. From this analysis, three themes emerged in the student's responses: a shift in his views of engineering ethics and social responsibility from idealism to pragmatism; an adjustment in how he thinks engineers should balance their responsibilities to the public and to their employers; and the characteristics he identifies for ethical engineers. This paper will be beneficial for engineering educators and researchers who are interested in measuring and developing ethical capabilities among engineering students. 
    more » « less
  4. Abstract Background

    While researchers in graduate engineering education are beginning to study facets of student experiences as they relate to attrition and persistence, theoretical applications of thriving theory have not been applied to graduate education contexts. Literature addresses students who persist and those who depart, inherently making assumptions that students who persist are doing well.


    The purpose of this article was to understand graduate student well‐being within students that persist and depart from the engineering PhD through an adapted model of the Spreitzer et al.'s Socially Embedded Model for Thriving at Work.


    Semi‐structured interviews were conducted with 64 current and former engineering PhD students, representing various stages of the PhD, status of persistence, questioning departure, or having left a PhD program. Interview transcripts were analyzed using an abductive analysis approach.


    An expanded model for thriving in graduate school was developed. While this study contextualizes the core elements of thriving theory (context features, agentic behaviors, and produced resources), we propose that the mechanisms for thriving in graduate school lie in interactions across these themes in processes we call Adapting, Internalizing, and Cultivating. We also reveal the presence of hidden competencies (from the point of view of the graduate student participants) that facilitate these transitions.


    Thriving in graduate school is an interconnected process which has not been explored in the context of engineering. This study shows how even students who persist in their degree may only be surviving, rather than thriving.

    more » « less
  5. null (Ed.)
    The development of professional engineers for the workforce is one of the aims of engineering education, which benefits from the complementary efforts of engineering students, faculty, and employers. Typically, current research on engineering competencies needed for practice in the workplace is focused on the experiences and perspectives of practicing engineers. This study aimed to build on this work by including the perspectives and beliefs of engineering faculty about preparing engineering students, as well as the perspectives and beliefs of engineering students about preparing for the workplace. The overall question of the research was, “What and how do engineering students learn about working in the energy sector?” Additional questions asked practicing engineers, “What is important to learn about your work and how did you learn what was important when you started in this industry? For engineering faculty, we asked, “What is important for students to learn as they prepare for work as professionals in the energy industry?” We anticipated that the findings of triangulating these three samples would help us better understand the nature of the preparation of engineering students for work by exploring the connections and disconnections between engineering education in school and engineering practice in the workplace. The aim was to map out the complex ecosystem of professional learning in the context of engineering education and practice. The core concept framing this study is the development of competence for engineering practice—including the education of students in the context of higher education and the practical learning of newly hired engineers on the job. Initial findings of the work-in-progress describe the nature of instruction and learning in higher education, learning in the workplace, along with comparisons and contrasts between the two. As of this point, we have initially mapped the learning ecosystem in the workplace based on in-depth, qualitative interviews with 12 newly hired engineers in the target energy company. In addition, we are analyzing interviews with two managers in the company and three other experienced leaders in the energy industry (this sample is currently in process and will include interviews with more participants). Currently, we are analyzing and mapping the learning and experiences of students in their studies of energy engineering and the instructional goals of engineering faculty teaching and mentoring these students. The map of the higher education ecosystem will connect with the workplace ecosystem to portray a more longitudinal map of the learning and development of professional competence of engineering students preparing for their career in the energy sector. The findings of the analysis of the workplace emphasized the importance of the social and relational systems in the workplace, while very preliminary indications from the educational context (students and faculty) indicate initial awareness of the social context of energy practice and policy. There are also indications of the nature of important cultural differences between higher education and industry. We continue to collect data and work on the analysis of data with the aim of mapping out the larger learning and experience ecosystem that leading to professional competence. 
    more » « less