skip to main content


Title: Documenting Engineering Identity: Electrical and Computer Engineering Departmental Documents and Student Identity
As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g., websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers.  more » « less
Award ID(s):
1623125
NSF-PAR ID:
10337960
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 ASEE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering identity is an integral determinant of academic success in engineering school, as it allows students to have an understanding of themselves in relation to what they study. Studies in engineering and other STEM disciplines have shown a positive correlation between identity and retention. Previous studies by Carlone and Johnson, Hazari, and Godwin have examined the following facets of a STEM or engineering identity: performance, competence, recognition and interest. While many current papers examine how culture and social interactions may influence identity, this paper examines how doing engineering coursework can uncover or influence a student’s engineering identity. This comparative case study examines how two students’ experiences solving an Open-ended Modeling Problem (OEMP) in their statics class may have contributed to their engineering identities. Cristina and Dylan, our two cases, both recalled how they solved a problem about a hands-free crutch device in an interview at the end of the semester. None of the questions were explicitly about identity. The interviews indicate that both students were interested in solving these problems and recognized themselves as being capable of solving the problem. In the case of Cristina, the problem helped her build confidence, both through her understanding of the material and her problem solving abilities. Our results also saw both students discussing how the disciplinary authenticity made them ‘feel like an engineer.’ Implications of this work include a deeper understanding of how day-to-day problem solving within courses can influence engineering identity and may aid in understanding how certain activities and scaffolding can influence engineering identity. This is important as students who have strong engineering identities are more likely to stay in engineering, become competent engineers, and find success in their respective fields. This research can inform educators on the importance of assigning novel, ill-defined problems that require students to apply their critical thinking skills and logic skills in real world situations. 
    more » « less
  2. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities. 
    more » « less
  3. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less
  4. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less
  5. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to support the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. The Department is cultivating this culture of “engineering with engineers” through a strong connection to industry, and through changes in the four essential areas of, a shared department vision, faculty, curriculum and supportive policies. This paper reports our continued efforts in these four areas and our measurement of their impact. Shared department vision: During the first year of the project, the department worked together to revise its mission to reflect the goal of fostering engineering identity. From this shared vision, the department aims to build a culture to promote inclusive practices. In the past year during the COVID-19 pandemic, this shared vision continued to guide many acts of care and community building for the department. Faculty: The pandemic prompted faculty to reflect on how they delivered their courses and cared for students. To promote inclusive practice, faculty utilized recorded lectures, online collaboration tools and instant messaging apps to provide multiple ways of communication for students. Although faculty summer immersion had to be postponed due to pandemic, interactions with industry continued in design courses, and via virtual seminars and socials. Efforts were also extended to strengthen connections between the department and recent graduates who just began working in industry and could become mentors for current students. Curriculum: A new curriculum to support the goals of this project was rolled out in the 2019-20 academic year. The pandemic hit right in the middle of the initial implementation of this new curriculum. Therefore, to maintain the essence of the new curriculum that emphasizes hands-on, doing engineering and experiential learning in the remote setting, many adjustments and modifications were made. Although initial evidence indicates the effectiveness of the new courses/curriculum even under remote teaching and learning, there are also many lessons-learned that can be examined for future implementations and modifications of the curriculum. Supportive policies: The department agreed to celebrate various acts of care for students and cares for teaching and learning in Annual Performance Reviews. Faculty also worked with other departments, the college, and the university to develop supportive policies beyond the department. For example, based on the recommendation from the department, the college set up a Student Advocate role who would assist students navigate through any incident that make they feel excluded. The new university tenure and promotion guidelines have just been approved with the support from the faculty in the department. Additionally, the department’s effort of building an inclusive culture is aligned with the university initiative for a reform to emphasize anti-racism curriculum. Details of the action items in each area of change that the department has taken to build this inclusive culture to foster engineering identity are shared in this paper. In addition, research gauging the impact of our efforts are discussed. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less