skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Customized Hybrid Approach to Infrastructure Maintenance Scheduling in Railroad Networks under Variable Productivities
Abstract Railroads are maintained routinely by using various types of rail‐bound machines so as to achieve the longest possible rail life and reduce the safety risks associated with unanticipated rail failures. The rail maintenance routing and scheduling problem (RMRSP), which involves routing of multiple maintenance vehicles and scheduling of hundreds of maintenance jobs over a large‐scale network, is usually subject to various types of complex constraints and extremely difficult to solve. This article proposes a vehicle routing problem with time windows (VRPTW) formulation for RMRSP and develops a customized stepwise algorithm to solve the problem. A series of numerical experiments are conducted to demonstrate that the proposed algorithm works very effectively, significantly outperforming the state‐of‐the‐art commercial solver. The results of two real‐world instances from a Class I railroad company show that the proposed model and solution algorithm enable the expensive maintenance vehicles to achieve a higher level of utilization, that is, spending more time on working and less time on deadhead traveling.  more » « less
Award ID(s):
1662825
PAR ID:
10070520
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
Volume:
33
Issue:
10
ISSN:
1093-9687
Page Range / eLocation ID:
p. 815-832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract From 2013 to 2022, 1671 derailments have been reported by the Federal Railroad Administration (FRA), 8.2% of which were due to journal bearing defects. The University Transportation Center for Railway Safety (UTCRS) designed an onboard monitoring system that tracks vibration waveforms over time to assess bearing health through three analysis levels. However, the speed of the bearing, a fundamental parameter for these analyses, is often acquired from Global Positioning System (GPS) data, which is typically not available at the sensor location. To solve this issue, this paper proposes to employ Machine Learning (ML) algorithms to extract the speed and other essential features from existing vibration data, eliminating the need for additional speed sensors. Specifically, the proposed method tries to extract the speed information from the signatures that are embedded in the Power Spectral Density (PSD) plot, which enables rapid real-time analysis of bearings while the train is in motion. The rapid extraction of data could be sent to a cloud accessible by train dispatchers and railcar owners for assessment of bearings and scheduling of replacements before defects reach a dangerous size. Eventually, the developed algorithm will reduce derailments and unplanned field replacements and afford rail stakeholders more cost-effective preventive maintenance. 
    more » « less
  2. Unmanned aerial vehicles (UAVs), commonly known as drones, are becoming increasingly popular for various applications. Freely flying drones create highly dynamic environments, where conventional routing algorithms which rely on stationary network contact graphs fail to perform efficiently. Also, link establishment through exploring optimal paths using hello messages (as is used in AODV algorithm) deems extremely inefficient and costly for rapidly changing network topologies. In this paper, we present a distance-based greedy routing algorithm for UAV networks solely based on UAVs' local observations of their surrounding subnetwork. Thereby, neither a central decision maker nor a time consuming route setup and maintenance mechanism is required. To evaluate the proposed method, we derive an analytical bound for the expected number of hops that a packet traverses. Also, we find the expected end-to-end distance traveled by each packet as well as the probability of successful delivery. The simulation results verify the accuracy of the developed analytical expressions and show considerable improvement compared to centralized shortest path routing algorithms. 
    more » « less
  3. Purpose Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT. Design/methodology/approach A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands. Findings The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s. Research limitations/implications Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic. Practical implications The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time. Originality/value A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions. 
    more » « less
  4. Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms. 
    more » « less
  5. The majority of the past research dealing with lane-changing controller design of autonomous vehicles (𝐴𝑉 s) is based on the assumption of full knowledge of the model dynamics of the 𝐴𝑉 and the surrounding vehicles. However, in the real world, this is not a very realistic assumption as accurate dynamic models are difficult to obtain. Also, the dynamic model parameters might change over time due to various factors. Thus, there is a need for a learning-based lane change controller design methodology that can learn the optimal control policy in real time using sensor data. In this paper, we have addressed this need by introducing an optimal learningbased control methodology that can solve the real-time lane-changing problem of 𝐴𝑉 s, where the input-state data of the 𝐴𝑉 is utilized to generate a near-optimal lane-changing controller by approximate/adaptive dynamic programming (ADP) technique. In the case of this type of complex lane-changing maneuver, the lateral dynamics depend on the longitudinal velocity of the vehicle. If the longitudinal velocity is assumed constant, a linear parameter invariant model can be used. However, assuming constant velocity while performing a lane-changing maneuver is not a realistic assumption. This assumption might increase the risk of accidents, especially in the case of lane abortion when the surrounding vehicles are not cooperative. Thus, in this paper, the dynamics of the 𝐴𝑉 are assumed to be a linear parameter-varying system. Thus we have two challenges for the lane-changing controller design: parameter-varying, and unknown dynamics. With the help of both gain scheduling and ADP techniques combined, a learning-based control algorithm that can generate a near-optimal lane-changing controller without having to know the accurate dynamic model of the 𝐴𝑉 is proposed. The inclusion of a gain scheduling approach with ADP makes the controller applicable to non-linear and/or parameter-varying 𝐴𝑉 dynamics. The stability of the learning-based gain scheduling controller has also been rigorously proved. Moreover, a data-driven lane-changing decision-making algorithm is introduced that can make the 𝐴𝑉 perform a lane abortion if safety conditions are violated during a lane change. Finally, the proposed learning-based gain scheduling controller design algorithm and the lane-changing decision-making methodology are numerically validated using MATLAB, SUMO simulations, and the NGSIM dataset. 
    more » « less